
PostgreSQL Replication

Christophe Pettus 
PostgreSQL Experts 

PerconaLive, April 25, 2018



Christophe Pettus 
CEO, PostgreSQL Experts, Inc. 

 
christophe.pettus@pgexperts.com 

thebuild.com 

twitter @xof

mailto:christophe.pettus@pgexperts.com
http://thebuild.com


Questions Welcome!



"It's more of a comment…"



"It's more of a comment…"





Replication Options.
• WAL shipping.


• Streaming replication.


• Trigger-based replication.


• Logical decoding-based replication.


• And exotic animals.



The Write-Ahead Log.
• A continuous stream of database changes written to local 

storage.


• Consists of a series of records, each a specific change to 
a specific underlying disk-level item.


• “Update field 3 of ctid (12312,6) of relation OID 918123 
to ‘cat’.”


• Written to disk as a series of 16MB “segments,” with large 
unpleasant hexadecimal names, like: 
000000010000002A00000065



Crash Recovery.
• The WAL was originally designed to provide crash 

recovery.


• On a startup, PostgreSQL goes back to the WAL segment 
that contains the last checkpoint, and starts replaying the 
activity in it.


• Once it reaches a consistent state again, the database 
can start up and receive connections.



Hm.
• The system doing the recovery doesn’t have to be the 

one that crashed, of course.


• So… what if the original system was still in operation?


• We could replay the WAL segments on a different system, 
and keep it up to date with the primary?


• And, voilà, WAL shipping was born (in version 8.0).



WAL Shipping.
• When the primary completes a WAL segment, it runs 

archive_command.


• archive_command can do anything, but it usually copies 
the file over to the secondary (or to a place the secondary 
can get at it).


• The secondary repeatedly runs restore_command (in 
recovery.conf) to replay the WAL information.



WAL Shipping: The Good.
• Cheap and cheerful to set up: You just need to be able to 

copy files around.


• Works well on slow or unreliable networks, like WANs, 
since no persistent connection is required.


• You can use it as a basis for point-in-time recovery, if you 
keep WAL information and base backups around to 
handle it.


• Works on really old versions of PostgreSQL that you 
shouldn’t be running anymore.



WAL Shipping: More Good.
• DDL changes in PostgreSQL are WAL-logged, so…


• … they’re pushed down to secondaries automatically.


• The secondary is a perfect mirror (allowing for replication 
lag) of the primary.


• The secondary is readable (if set up right) for read-only 
queries.


• Failover is as easy as just promoting the secondary and 
letting it come back up; it takes <1 minute, usually.



WAL Shipping: The Bad.
• Secondary is only as up-to-date as the last 16MB WAL 

segment: You can lose some changes.


• WAL segments have to be managed lest you run out of 
disk space.


• Replicating to multiple secondaries requires some 
complex orchestration.


• The secondary cannot be written, at all, including 
temporary tables and materialized views.



WAL Shipping: More Bad.
• Since the WAL is a global resource across all databases 

in the PostgreSQL server, you cannot pick and choose 
anything.


• You must replicate all fields in all columns in all tables in 
all the databases.


• You cannot consolidate multiple servers into one using 
WAL shipping.


• Cannot replicate between major versions of PostgreSQL, 
so can’t use it for zero-downtime upgrades.



Streaming Replication.
• Well, what if we didn’t just ship files, but transmitted the 

WAL information down a network connection?


• The secondary could stay much “closer” to the primary.


• And that’s what streaming replication is: The same (pretty 
much) WAL information, only transmitted down to the 
secondary.



Streaming Replication: The 
Basics.

• recovery.conf is used to “point” the secondary at the 
primary.


• The secondary connects to the primary, and receives a 
stream of the WAL information.


• Otherwise, largely the same as WAL shipping, with the 
same limitations and benefits.



Stream Replication: The 
Good.

• The secondary stays close to the primary, in terms of 
transaction activity.


• With (optional) synchronous replication, the chance of a 
lost transaction (committed on the primary but not the 
secondary) is essentially zero.


• Replicas can cascade for more complex topologies.



WAL-Based Replication 
Weirdnesses.



Replication Delay.
• When a WAL change to the data in a relation comes into a 

secondary, and that secondary is running a query that 
uses that relation, what should we do?


• If we applied the change “under” the query, the result 
could be wrong.


• Option 1: Delay applying the change until the query 
completes.


• Option 2: Cancel the query.



max_standby_*_delay
• Two parameters (one for streaming, one for WAL shipping) 

that control how long to wait before cancelling the query.


• Higher settings mean more potential replication lag.


• Advice: Dedicate a server for failover with these set to 0, 
and other servers for read-only traffic with higher values.



hot_standby_feedback
• If “on”, sends feedback upstream telling the primary what 

tables are being queried on the secondary.


• The primary will then defer vacuuming those to avoid 
query cancellations on the secondary.


• This can result in table bloat, if there’s enough query 
traffic on the secondary.


• It does not completely eliminate query cancellations.


• In general, it’s a good idea, but monitor bloat.



vacuum_defer_cleanup_age
• Don’t bother.



Trigger-Based Replication.



Trigger-Based Replication.
• WAL-based replication has a lot of restrictions.


• No selectivity on replication, same major version, etc.


• But PostgreSQL has a very elaborate trigger mechanism!


• What if we attached a trigger to each table, caught 
update / insert / delete operations, and pushed them to 
the secondary that way?



Why, yes, we could do that.
• Actually predated WAL-based replication, in the form of 

Slony 1.


• Now we have:


• Slony (C)


• Londiste (Python)


• Bucardo (Perl)


• … plus some others that basically work the same way.



Triggers: The Good.
• Much more flexible than WAL-based replication.


• Depending on the particular package, can:


• Replicate only some databases.


• Replicate only some tables.


• Replicate only some fields.


• Filter changes based on rules on the primary before 
sending them over.



Triggers: More Good.
• Can build exotic topologies.


• Can consolidate multiple databases into a single 
database (for data warehousing, etc.).


• Bucardo (only) does multi-master replication.


• Works between different PostgreSQL versions, so can use 
them for zero-downtime upgrading.



Triggers: The Bad.
• Tedious and fiddly to set up.


• Every table that is going to be replicated needs a primary key 
(at least a de facto one).


• Initial copies can take a long time.


• Awkward fit with WAL-based replication for failover.


• All those triggers firing all the time and the log tables required 
have a performance impact.


• No automatic DDL change distribution: That’s on you.



Comparison
• Slony tends to be the highest-performance of the lot.


• … but requires C-language extensions.


• Londiste requires PL/PythonU availability.


• Bucardo can work entirely outside the subscriber (but not 
provider) system, thus suitable for RDS.


• Bucardo also supports multi-master and primary key 
updates.



Triggers: Advice.
• If you can use more modern logical decoding-based 

replication, use that instead.


• Still useful for major version upgrades, when the old 
version <9.4.


• Sometimes required for specialized environments where 
you don’t have access to built-in logical replication or the 
WAL stream (in specific, RDS).



Logical Decoding.



Logical Decoding.
• First introduced in PostgreSQL 9.4.


• It’s not a packaged system like streaming replication; it’s 
a framework for implementing logical replication and 
other fun things.


• Really required 9.6+ to get going.



How It Works.
• The framework turns WAL records back into SQL-type 

operations.


• “Update field 3 of ctid (12312,6) of relation OID 918123 to 
‘cat’” becomes “UPDATE menagerie SET 
animal_type=‘cat’ WHERE ctid=‘(12312,6)’” (to a first 
approximation).


• Doesn’t reconstruct the actual SQL that made the change, 
or build actual SQL strings.



Replication Slots.
• A logical replication slot is a named database object that 

“captures” the WAL stream.


• Once created, the framework delivers the decoded WAL 
stream to the slot’s specified plug-in, which can do 
whatever it wants with it.


• The plug-in reports back to the framework when it has 
processed the WAL stream, so that the local WAL 
segments can be recycled.



Replication Slots, 
The Horrible Truth

• A replication slot keeps track of the WAL position of its 
consumer (in the case of logical replication, the plug-in).


• If the consumer stops consuming, the framework retains 
WAL information so it can catch up.


• This results in WAL segments not being recycled.


• So you can run yourself out disk space.


• So, monitor your disk space already!



Replication Plug-Ins.
• A replication plugin is a bit of C code installed in the primary 

server (like any extension) that receives the stream of 
decoding WAL records.


• It can do anything it wants with them: logging, auditing, 
feeding to an external data system, etc.


• https://github.com/confluentinc/bottledwater-pg 
Logical replication into Kafka!


• PostgreSQL ships with a test plugin that provides example 
code and logging, but it’s not useful for any actual 
production use.

https://github.com/confluentinc/bottledwater-pg


PostgreSQL-to-PostgreSQL 
Logical Replication Options.
• On PostgreSQL 10+, built-in logical replication.


• On PostgreSQL 9.4+, pglogical.


• https://www.2ndquadrant.com/en/resources/pglogical/



The High-Level View.
• Each takes the stream of decoded changes, applies them 

at the SQL level.


• This means (most) constraints are enforced, rows are 
locked, triggers (can) fire, MVCC happens, etc.


• A database can be both a publisher of changes and a 
subscriber to changes.


• A single table can be both a source and target.


• A single table cannot replicate bidirectionally, however. 



General Setup.
• Use pg_dump —schema-only to copy the schema over to 

the subscriber node.


• When it first connects, can do an initial bulk copy of the 
existing data, followed by replicating data going forward.


• DDL changes are not propagated (pglogical provides a 
function to run DDL changes on each node; in-core 
leaves it to you).



Row Identity
• All tables that are to be replicated should have some kind 

of row identity.


• Ideally, a primary key or a UNIQUE index.


• pglogical requires either a PK or a single UNIQUE index.


• In-core logical replication can use the entire row value as 
to identify the row if all else fails.



Sequences.
• Sequence values are not replicated (row values set off of a 

sequence are, of course).


• pglogical can replicate them in batch as a background 
process.


• If consolidating to a single table, use disjoint ranges from the 
source databases (or non-sequence keys).


• UUIDs! UUIDs! UUIDs!


• Logical replicas are generally not suitable for failover due to 
this restriction.



TRUNCATE
• In-core logical replication does not replicate TRUNCATE 

at all (at present).


• pglogical replicates TRUNCATE, but does not cascade 
TRUNCATE CASCADEs.



Reality Check.
• You can only replicate a “real” table to a “real” table.


• So, no materialized views, views, foreign tables, or 
partition root tables.


• If you are using PostgreSQL 10 partitioning, the root table 
is not a real table, so cannot participate in logical 
replication (either source or destination).


• Old-style partitioning should still be possible with 
ENABLE ALWAYS triggers (unverified at press time).



Uses the WAL, so…
• Cannot replicate temporary or unlogged tables.


• COPY operations are broken into individual INSERTs.


• Individual statements are “unrolled”.


• A single UPDATE changing 10,000 rows will be applied 
as 10,000 UPDATEs.



Compare and Contrast
• pglogical has several features in-core replication does 

not.


• Flexible conflict handling, row/column filtering, 
sequence replication, etc.


• pglogical requires an extension to be built and installed; 
not part of the core distribution.


• pglogical is operated by functions; in-core replication 
uses SQL statements.



Battle of the Replications
• Only a primary node can be a logical replication publisher or 

subscriber.


• If a primary with logical subscribers fails over to a secondary, 
the current logical replication state is not passed over to the 
secondary.


• So, synchronization problems can happen.


• Changes on the streaming secondary that have not been 
pushed down to the logical subscribers, for example.


• PostgreSQL 11 should address this.



On Amazon RDS?
• Pre version 10, your logical replication options 

are… limited.


• RDS supports a somewhat quirky set of logical decoding 
plugins.


• No general table-to-table replication at the moment.


• PostgreSQL 10 is now available, and supports in-core 
logical replication.



Exotic Animals.



pgpool2 statement-based 
replication.

• pgpool2 can “split” the incoming query stream between 
two servers.


• Thus, all operations are applied to both.


• Please do not use this feature.



Amazon DMS.
• On PostgreSQL, based on logical decoding.


• Primarily designed for migration between different 
database system types.


• Does not support some important PostgreSQL types (like 
TIMESTAMPTZ).


• Thus, not really useful for PostgreSQL-to-PostgreSQL 
replication.



2nd Quadrant BDR.
• Shares many similarities to pglogical.


• Currently, a closed-source proprietary product.


• 2Q indicated it will be open-source in the future.


• Can do bidirectional (i.e., multi-master) replication.



Other commercial solutions.
• Lots of other commercial solutions.


• Pretty much all trigger-based.


• Generally most useful as packaged solution for between-
database-product migrations.



In Sum!



Advice?
• For failover, use streaming replication.


• For read-only queries, use streaming replicas that are not 
dedicated to failover.


• If you need logical replication:


• Use in-core logical replication unless you need a 
pglogical feature.



Thank you!



Questions?



Christophe Pettus 
CEO, PostgreSQL Experts, Inc. 

 
christophe.pettus@pgexperts.com 

thebuild.com 

twitter @xof

mailto:christophe.pettus@pgexperts.com
http://thebuild.com


pgexperts.com


