PostgreSQL Replication

Christophe Pettus
PostgreSQL Experts
Perconalive, April 25, 2018

Christophe Pettus

CEO, PostgreSQL Experts, Inc.

christophe.pettus@pgexperts.com

thebuild.com

twitter @xof

mailto:christophe.pettus@pgexperts.com
http://thebuild.com

Questions Welcome!

"It's more of a comment..."

N \\

& “It's more of a comment..."

L o .
\ X AN L
".k \ . . N

0% D - NS !
§\2 '5 W\. ‘1‘\.2.’.

s
»

”H.»h...ﬁ)..vr...\\i, v
s 0 %Ay B VAs B han .obo-.n."vb".’l. N

- v >
ll/ ~ -— .l!"-’ - - ,.. : Tond s 4

Replication Options.

WAL shipping.

Streaming replication.
Trigger-based replication.

Logical decoding-based replication.

And exotic animals.

The Write-Ahead Log.

e A continuous stream of database changes written to local
storage.

e Consists of a series of records, each a specific change to
a specific underlying disk-level item.

e “Update field 3 of ctid (12312,6) of relation OID 918123
to ‘cat’.”

e Written to disk as a series of 16MB “segments,” with large
unpleasant hexadecimal names, like:

000000010000002A00000065

Crash Recovery.

e The WAL was originally designed to provide crash
recovery.

e On a startup, PostgreSQL goes back to the WAL segment
that contains the last checkpoint, and starts replaying the
activity in it.

e Once it reaches a consistent state again, the database
can start up and receive connections.

Hm.

The system doing the recovery doesn’t have to be the
one that crashed, of course.

So... what if the original system was still in operation?

We could replay the WAL segments on a different system,
and keep it up to date with the primary?

And, voila, WAL shipping was born (in version 8.0).

WAL Shipping.

e When the primary completes a WAL segment, it runs
archive_command.

e archive_command can do anything, but it usually copies
the file over to the secondary (or to a place the secondary
can get at it).

e The secondary repeatedly runs restore_command (in
recovery.conf) to replay the WAL information.

WAL Shipping: The Good.

e Cheap and cheerful to set up: You just need to be able to
copy files around.

e Works well on slow or unreliable networks, like WANS,
since no persistent connection is required.

e You can use it as a basis for point-in-time recovery, if you
keep WAL information and base backups around to
handle it.

e \Works on really old versions of PostgreSQL that you
shouldn’t be running anymore.

WAL Shipping: More Good.

e DDL changes in PostgreSQL are WAL-logged, so...
e ... they’re pushed down to secondaries automatically.

e The secondary is a perfect mirror (allowing for replication
lag) of the primary.

e The secondary is readable (if set up right) for read-only
queries.

e Failover is as easy as just promoting the secondary and
letting it come back up; it takes <1 minute, usually.

WAL Shipping: The Bad.

e Secondary is only as up-to-date as the last 16 MB WAL
segment: You can lose some changes.

e WAL segments have to be managed lest you run out of
disk space.

e Replicating to multiple secondaries requires some
complex orchestration.

e The secondary cannot be written, at all, including
temporary tables and materialized views.

WAL Shipping: More Bad.

e Since the WAL is a global resource across all databases
in the PostgreSQL server, you cannot pick and choose
anything.

e You must replicate all fields in all columns in all tables in
all the databases.

e You cannot consolidate multiple servers into one using
WAL shipping.

e Cannot replicate between major versions of PostgreSQL,
so can’t use it for zero-downtime upgrades.

Streaming Replication.

e Well, what if we didn’t just ship files, but transmitted the
WAL information down a network connection?

e The secondary could stay much “closer” to the primary.

e And that’s what streaming replication is: The same (pretty
much) WAL information, only transmitted down to the
secondary.

Streaming Replication: The
Basics.

e recovery.conf is used to “point” the secondary at the
primary.

e The secondary connects to the primary, and receives a
stream of the WAL information.

e Otherwise, largely the same as WAL shipping, with the
same limitations and benefits.

Stream Replication: The
Good.

e The secondary stays close to the primary, in terms of
transaction activity.

e With (optional) synchronous replication, the chance of a
lost transaction (committed on the primary but not the
secondary) is essentially zero.

e Replicas can cascade for more complex topologies.

WAL-Based Replication
Welrdnesses.

Replication Delay.

When a WAL change to the data in a relation comes into a
secondary, and that secondary is running a query that
uses that relation, what should we do?

If we applied the change “under” the query, the result
could be wrong.

Option 1: Delay applying the change until the query
completes.

Option 2: Cancel the query.

max_standby * delay

e Two parameters (one for streaming, one for WAL shipping)
that control how long to wait before cancelling the query.

e Higher settings mean more potential replication lag.

e Advice: Dedicate a server for failover with these set to O,
and other servers for read-only traffic with higher values.

hot_standby_feedback

If “on”, sends feedback upstream telling the primary what
tables are being queried on the secondary.

The primary will then defer vacuuming those to avoid
query cancellations on the secondary.

This can result in table bloat, if there’s enough query
traffic on the secondary.

It does not completely eliminate query cancellations.

In general, it’s a good idea, but monitor bloat.

vacuum_defer_cleanup_age

e Don’t bother.

Trigger-Based Replication.

Trigger-Based Replication.

e WAL-based replication has a lot of restrictions.
 No selectivity on replication, same major version, etc.
e But PostgreSQL has a very elaborate trigger mechanism!

e What if we attached a trigger to each table, caught
update / insert / delete operations, and pushed them to

the secondary that way?

Why, yes, we could do that.

o Actually predated WAL-based replication, in the form of
Slony 1.

* Now we have:
e Slony (C)
* |Londiste (Python)
 Bucardo (Perl)

* ... plus some others that basically work the same way.

Triggers: The Good.

e Much more flexible than WAL-based replication.
e Depending on the particular package, can:

e Replicate only some databases.

e Replicate only some tables.

 Replicate only some fields.

e Filter changes based on rules on the primary before
sending them over.

Triggers: More Good.

Can build exotic topologies.

Can consolidate multiple databases into a single
database (for data warehousing, etc.).

Bucardo (only) does multi-master replication.

Works between different PostgreSQL versions, so can use
them for zero-downtime upgrading.

Triggers: The Bad.

Tedious and fiddly to set up.

Every table that is going to be replicated needs a primary key
(at least a de facto one).

Initial copies can take a long time.
Awkward fit with WAL-based replication for failover.

All those triggers firing all the time and the log tables required
have a performance impact.

No automatic DDL change distribution: That’s on you.

Comparison

Slony tends to be the highest-performance of the lot.
e ... but requires C-language extensions.
Londiste requires PL/PythonU availability.

Bucardo can work entirely outside the subscriber (but not
provider) system, thus suitable for RDS.

Bucardo also supports multi-master and primary key
updates.

Triggers: Advice.

e |f you can use more modern logical decoding-based
replication, use that instead.

o Still useful for major version upgrades, when the old
version <9.4.

e Sometimes required for specialized environments where
you don’t have access to built-in logical replication or the
WAL stream (in specific, RDS).

Logical Decoding.

Logical Decoding.

First introduced in PostgreSQL 9.4.
It’s not a packaged system like streaming replication; it’s
a framework for implementing logical replication and

other fun things.

Really required 9.6+ to get going.

How It Works.

e The framework turns WAL records back into SQL-type
operations.

e “Update field 3 of ctid (12312,6) of relation OID 918123 to
‘cat’ becomes “UPDATE menagerie SET
animal_type="‘cat’ WHERE ctid=‘(12312,6)’” (to a first
approximation).

e Doesn’t reconstruct the actual SQL that made the change,
or build actual SQL strings.

Replication Slots.

e A logical replication slot is a named database object that
“captures” the WAL stream.

e Once created, the framework delivers the decoded WAL
stream to the slot’s specified plug-in, which can do
whatever it wants with It.

e The plug-in reports back to the framework when it has
processed the WAL stream, so that the local WAL
segments can be recycled.

Replication Slots,
The Horrible Truth

A replication slot keeps track of the WAL position of its
consumer (in the case of logical replication, the plug-in).

If the consumer stops consuming, the framework retains
WAL information so it can catch up.

This results in WAL segments not being recycled.
So you can run yourself out disk space.

So, monitor your disk space already!

Replication Plug-ins.

e A replication plugin is a bit of C code installed in the primary
server (like any extension) that receives the stream of
decoding WAL records.

* |t can do anything it wants with them: logging, auditing,
feeding to an external data system, etc.

e https://github.com/confluentinc/bottledwater-pg
Logical replication into Kafkal!

e PostgreSQL ships with a test plugin that provides example

code and logging, but it’'s not useful for any actual
production use.

https://github.com/confluentinc/bottledwater-pg

PostgreSQL-to-PostgreSQL
Logical Replication Options.

* On PostgreSQL 10+, built-in logical replication.
 On PostgreSQL 9.4+, pglogical.

e https://www.2ndquadrant.com/en/resources/pglogical/

The High-Level View.

e Each takes the stream of decoded changes, applies them
at the SQL level.

 This means (most) constraints are enforced, rows are
locked, triggers (can) fire, MVCC happens, etc.

e A database can be both a publisher of changes and a
subscriber to changes.

e A single table can be both a source and target.

e A single table cannot replicate bidirectionally, however.

General Setup.

e Use pg_dump —schema-only to copy the schema over to
the subscriber node.

e When it first connects, can do an initial bulk copy of the
existing data, followed by replicating data going forward.

e DDL changes are not propagated (pglogical provides a
function to run DDL changes on each node; in-core

leaves it to you).

Row ldentity

All tables that are to be replicated should have some kind
of row identity.

Ideally, a primary key or a UNIQUE index.

pglogical requires either a PK or a single UNIQUE index.

In-core logical replication can use the entire row value as
to identify the row if all else fails.

Sequences.

e Seqguence values are not replicated (row values set off of a
sequence are, of course).

* pglogical can replicate them in batch as a background
process.

e |f consolidating to a single table, use disjoint ranges from the
source databases (or non-sequence keys).

e UUIDs! UUIDs! UUIDs!

e Logical replicas are generally not suitable for failover due to
this restriction.

TRUNCATE

e In-core logical replication does not replicate TRUNCATE
at all (at present).

e pglogical replicates TRUNCATE, but does not cascade
TRUNCATE CASCADEs.

Reality Check.

You can only replicate a “real” table to a “real” table.

S0, no materialized views, views, foreign tables, or
partition root tables.

If you are using PostgreSQL 10 partitioning, the root table
IS not a real table, so cannot participate in logical
replication (either source or destination).

Old-style partitioning should still be possible with
ENABLE ALWAYS triggers (unverified at press time).

Uses the WAL, so...

e Cannot replicate temporary or unlogged tables.
e COPY operations are broken into individual INSERTSs.

¢ |ndividual statements are “unrolled”.

e A single UPDATE changing 10,000 rows will be applied
as 10,000 UPDATEs.

Compare and Contrast

* pglogical has several features in-core replication does
not.

e Flexible conflict handling, row/column filtering,
sequence replication, etc.

e pglogical requires an extension to be built and installed;
not part of the core distribution.

e pglogical is operated by functions; in-core replication
uses SQL statements.

Battle of the Replications

 Only a primary node can be a logical replication publisher or
subscriber.

e |If a primary with logical subscribers fails over to a secondary,
the current logical replication state is not passed over to the
secondary.

* S0, synchronization problems can happen.

 Changes on the streaming secondary that have not been
pushed down to the logical subscribers, for example.

e PostgreSQL 11 should address this.

On Amazon RDS?

Pre version 10, your logical replication options
are... limited.

RDS supports a somewhat quirky set of logical decoding
plugins.

No general table-to-table replication at the moment.

PostgreSQL 10 is now available, and supports in-core
logical replication.

_e e ey ﬁ.l' “
yua o™ - £ L
- ‘-'\"‘ y
>/ 7'.;4.:';.' :
’ ~ 4 -
. .' ’(_.{ —ph 2
OB TR
’. ~ .1.1«' &
- . .

-
[-
£ ,',. Ty | 'Sy

-~

pgpool2 statement-based
replication.

e pgpool2 can “split” the incoming query stream between
two servers.

e Thus, all operations are applied to both.

e Please do not use this feature.

Amazon DMS.

e On PostgreSQL, based on logical decoding.

e Primarily designed for migration between different
database system types.

e Does not support some important PostgreSQL types (like
TIMESTAMPTZ).

e Thus, not really useful for PostgreSQL-to-PostgreSQL
replication.

2nd Quadrant BDR.

e Shares many similarities to pglogical.
e Currently, a closed-source proprietary product.
e 2Q indicated it will be open-source in the future.

e Can do bidirectional (i.e., multi-master) replication.

Other commercial solutions.

e | ots of other commercial solutions.
e Pretty much all trigger-based.

e Generally most useful as packaged solution for between-
database-product migrations.

In Sum!

Advice?

For failover, use streaming replication.

For read-only queries, use streaming replicas that are not
dedicated to failover.

If you need logical replication:

e Use in-core logical replication unless you need a
pglogical feature.

Thank you!

Questions?

Christophe Pettus

CEO, PostgreSQL Experts, Inc.

christophe.pettus@pgexperts.com

thebuild.com

twitter @xof

mailto:christophe.pettus@pgexperts.com
http://thebuild.com

POSTGRESQL

EXPERTS, INC.

pgexperts.com

