
thebuild.com
pgexperts.com

Beyond the
B-Tree

Christophe Pettus
@xof

Let us now praise
famous data
structures.

Thanks, wikipedia.

The B-Tree!

• Invented at Boeing Research Labs in 1971.

• Provides O(log n) access to leaf nodes on
equality searches.

• Compact, well-understood, efficient.

• If only we knew what the “B” stands for!

Slices, dices, makes julienne fries.

• Can be used to traverse the index in
forward- or reverse-sorted order.

• Also helps with comparison searches: <, >.

• Can work on any type that is totally
ordered.

• So, problem solved!

> ?

Problem not quite solved.

• Not all types are totally ordered.

• Or, if you can define a total ordering, the
total ordering is arbitrary or not naturally
useful.

• Or, the type in question uses operators
that don’t map easily into direct
comparison.

GIST and GIN!

• Generalized Index Storage Technique.

• Generalized Inverted iNdex.

• Index frameworks, not single index types.

• Can be used for pretty much any type to
support pretty much any operator it
chooses to.

What’s GIST good for?

• GIST indexes are generally used for types
that partition a mathematical space.

• Geometries, ranges, etc.

• “Inside of,” “Close to.”

• Generally supports containment, distance,
and similar operations.

What’s GIN good for?

• Stores tokens, and pointers to the rows
that contain those tokens.

• Good for inverted indexes such as full-text
searches (“these are the rows with ‘cat’”).

• A “token” can be an array entry, JSON key/
value, etc.: Any scalar value that PostgreSQL
supports.

Just what it says on the tin.

• Each GIST / GIN index implementation
specifies which operators it can support.

• Read the documentation!

• You can define indexes for your own types,
too.

• Some C language programming required.

Creating a GIST index.

•CREATE INDEX ON t USING GIST(f);

• You need to specify the USING GIST
clause even if there’s no other way to index
the type.

• Selects the default operator class for that
particular type.

Wait, what?

• It’s possible to have more than one
“operator class” for a particular type.

• Creates different kinds of indexes
optimized for different kinds of queries.

• Read the documentation! Make sure you
know what kinds of queries you want to
do.

Why would we use this?

• Geographic data. (“What polygons are this
point in?”)

• Range data. (“What date ranges overlap
with this one?”)

• Similarity data. (“What phrases, in trigrams,
are most similar to this one?”)

The Starbucks Problem.

• “Where are the nearest n Starbucks to this
point?”

• This has to be an easy problem, right?

• I mean, what else are geo databases for?

Except it’s not.

• “Find all points in the database within this
bounding rectangle, then sort by distance.”

• OK, great! We’ll just… um… we’ll… er…

• Um, how big should that rectangle be?

Problematic!

• Traditionally, had to do something like a
binary search, store heuristics, or some
other hack.

• But now, KNN Indexes to the rescue!

<-> operator

• If the GIST index for the type provides the
<-> operator, you can use it for nearest
neighbors:

• SELECT id, store_loc<->point(43.45, -71.91)
 FROM stores
 ORDER BY store_loc<->point(43.45, -71.91)
 LIMIT 10;

Not just geometries!

• Any data that defines a <-> operator.

• The type turns “how close?” into a scalar
value for the indexing system.

• pg_tgrm does this for text similarity
matching.

• Your own types! (Some C programming
required.)

GIST on scalar types.

• You can (with an extension in contrib/)
create GIST indexes on scalar types!

• You get <, ≤, =, ≥, > and <->.

• Why would you want to do that?

A Hard Problem.

• “Don’t allow two bookings to be inserted
into the database for the same room where
the dates overlap.”

• There’s no way to express this using
traditional UNIQUE constraints.

• Constraint Exclusion to the rescue!

One Catch.

• It has to be a single index.

• Since RANGE types require a GIST
index…

• The index has to be a GIST index.

• By default, simple scalar values don’t have
GIST indexing.

Let’s say we have…

xof=# \d reservations_booking
 Table
"public.reservations_booking"
 Column | Type |
Modifiers
--------+----------------------
+---

 id | integer | not null default
nextval('reservations_booking_id_seq'::regclass)
 room | character varying(4) | not null
 dates | daterange | not null
Indexes:
 "reservations_booking_pkey" PRIMARY KEY, btree (id)

And add constraint index…

xof=# CREATE EXTENSION btree_gist;
CREATE EXTENSION
xof=# ALTER TABLE reservations_booking ADD EXCLUDE USING
GIST (room WITH =, dates WITH &&);
ALTER TABLE

And profit!

>>> Booking(room='123', dates=DateRange(date(2015,9,1),
date(2015,9,2))).save()
>>> Booking(room='123', dates=DateRange(date(2015,9,2),
date(2015,9,7))).save()
>>> Booking(room='127', dates=DateRange(date(2015,9,2),
date(2015,9,7))).save()
>>> Booking(room='123', dates=DateRange(date(2015,9,5),
date(2015,9,9))).save()
(blah blah blah)
IntegrityError: conflicting key value violates exclusion
constraint "reservations_booking_room_dates_excl"
DETAIL: Key (room, dates)=(123, [2015-09-05,2015-09-09))
conflicts with existing key (room, dates)=(123,
[2015-09-02,2015-09-07)).

GIN Indexes. The La Brea Tar Pits.

• Maps “tokens” (arbitrary scalar values) to
the rows that contain them.

• Most familiar use is in full-text search,
mapping lexemes to the rows that contain
them.

• Allow annotations (such as frequency) on
index entries.

But the coolest use: JSON!

• PostgreSQL has two JSON types: json and
jsonb.

• json stores the raw text of the json blob,
whitespace and all.

• jsonb is a compact, indexable
representation.

Why use json instead of jsonb?

• json (vs jsonb) is faster to insert, since it
doesn’t have to process the data.

• json allows for two highly dubious
“features” (duplicate object keys, stable
object key order).

• OK if you are just logging json that you
don’t plan to extensively query.

Why use jsonb instead of json?

• All other applications want jsonb.

• jsonb can be indexed in useful ways, unlike
json.

jsonb indexing.

• jsonb has GIN indexing.

• Default operator class supports queries
with the @>, ?, ?& and ?| operators.

• The query must be against the top-level
object for the index to be useful.

• Can query nested objects, but only in paths
rooted at the top level.

jsonb_path_ops

• Optional GIN index type for jsonb.

• Only supports @>.

• Hashes paths for each item, rather than just
storing the key itself.

• Faster for @> operations with nesting.

jdoc @> '{"tags": ["qui"]}'

• Both index types support this.

• jsonb_ops (the default) will seach for
everything that has “tags”, has “qui”, AND
them, and then do a recheck for the path
structure.

• jsonb_path_ops will go directly to entries
for that path.

Which to use?

• If you just need @>, jsonb_path_ops will
probably be faster.

• If you need the other supported
operators, you need jsonb_ops.

Some caveats.

• GIST and GIN indexes can (traditionally) be
big.

• GIN posting list compression in 9.4 can
make them super-small.

• They are not free to create and maintain.

• Like any index, only create them if you need
them.

thebuild.com
pgexperts.com

Questions?

Christophe Pettus
@xof

thebuild.com
pgexperts.com

Thank you!

Christophe Pettus
@xof

