
thebuild.com
pgexperts.com

Django and
PostgreSQL

Christophe Pettus 
PGConf US 2017

Welcome!

• Christophe Pettus

• CEO of PostgreSQL Experts, Inc.

• Based in sunny Alameda, California.

• Technical blog: thebuild.com

• Twitter: @xof

• christophe.pettus@pgexperts.com

mailto:christophe.pettus@pgexperts.com

So. Much. Stuff.

• Django 1.7 introduced native migrations.

• Django 1.8 introduced and 1.9-1.10
extended django.contrib.postgres.

• So many features, so little time!

New Field Types

• Array Field.

• Range Field.

• hstore Field.

• JSON Field.

Array Fields.

• Arrays are first-class types in PostgreSQL.

• ArrayField allows you use them directly.

• Maps into Python lists.

• But…

PostgreSQL Arrays != Python Lists

• PostgreSQL arrays are of homogeneous
types.

• PostgreSQL multidimensional arrays are
rectangular (although individual entries can
be NULL).

Array Field Queries: __contains

• Matches if the array field on the left
contains all of the entries of the list on the
right.

• [‘a’,’b’,’c’] contains [‘a’,’b’] but

• [‘a’,‘b’,’c’] does not contain [‘a’, ‘d’]

• Order is not important in __contains

Array Field Queries: __contained_by

• Matches if the list on the right contains all
of the entries of the field on the left.

• [‘a’,’b’,’c’] is not contained by [‘a’,’b’] and

• [‘a’,‘b’,’c’] is not contained by [‘a’, ‘d’] but

• [‘a’,’b’] is contained by [‘a’,’b’,’c’]

• Order is not important here, either.

Array Field Queries: __overlaps

• Matches if the array field on the left
contains any of the entries of the list on the
right.

• [‘a’,‘b’,’c’] overlaps [‘a’, ‘d’] but

• [‘a’,’b’,’c’] does not overlap [‘d’]

Array Field Queries: __len

• Returns the length of the field on the left as
an integer.

• [‘a’,’b’] _len == 2

• (Note: Unless you’ve created an expression
index, does a full table scan.)

Array Field Transforms: Index

• Query the first element of an array:

• .filter(array_field__0 = ‘a’)

• If there is no entry ‘n’, does not match
rather than an error.

• You can’t specify the index
programmatically in this syntax.

• … except with kwargs, of course.

Array Field Transforms: Slices

• Slices also work!

• .filter(array_field_0_1=[‘a’,’b’])

• .filter(array_field_0_2__contains=[‘a’])

Indexing Array Fields.

• So, just specify db_index=True and you’re
set right?

• Wrong.

• This creates a b-tree index, which is pretty
useless for array (and other non-scalar)
types.

Sidebar: PostgreSQL Indexing.

• PostgreSQL supports multiple types of
index.

• Most people are familiar with btree
indexes; that’s what you get with
db_index=True

• btree indexes are fast, compact, and provide
total ordering.

Great, but not perfect.

• btree indexes require a totally ordered
type.

• Some types (points, arrays, JSON, etc.)
don’t have total ordering, but do have other
operations (inclusion, key containment).

• For those, we have GIST and GIN indexes.

GIST vs GIN.

• GIN indexes are used for types that
contain keys and values (arrays, hstore,
jsonb).

• GIST indexes are used for types that
partition a mathematical space (points,
ranges).

• They “just work” once created.

Indexing Array Fields.

• Arrays support GIN (Generalized INverted
indexes).

• Accelerates __contains, __contained_by,
__overlaps.

• Does not help __len or slice operations.

Indexing Array Fields.

•CREATE INDEX ON app_model USING
GIN (field);

• They’re not free to update.

• Updated as a batch at VACUUM time.

• Don’t create one unless you need it.

• Small tables generally don’t.

Indexing Array Fields.

• Indexing len:

•CREATE INDEX ON app_model
((array_length(field,1)));

• Indexing slices:

•CREATE INDEX ON app_model
((field[1:2]));

• PostgreSQL arrays are 1-based.

Why use Array Fields?

• Underlying data is actually an array.

• Replacement for a many-to-many table.

• A denormalization to store results of an
expensive query (proceed with caution
here!).

Range Fields.

• PostgreSQL has native range types!

• Range types span a range of a scalar type:

• For example, [1,8] as an int4range includes
1, 2, 3, 4, 5, 6, 7, 8.

• Bounds can be exclusive: [1,8) includes 1, 2,
3, 4, 5, 6, 7.

• [) is the default.

To infinity and beyond!

• You can omit a bound to indicate “all values
less/than greater than.”

• Some types (for example, dates) also have a
special “infinity” value.

• psycopg2 includes a Python “Range” base
type that handles the various boundary
values, and the infinity special cases.

Types of Ranges.

• Out of the box, Django supports:

• IntegerRange and BigIntegerRange.

• FloatRange.

• DateTimeRange.

• DateRange.

Range Field Queries.

• __contains, __contained_by, __overlap
work the way you’d expect.

• __fully_lt, __fully_gt is true if both the
lower and upper bounds of the field are
less/greater than the comparison value.

• __adjacent_to is true if the field and the
comparison value share a boundary.

Range Field Queries.

• __not_lt is true if the field does not
contain any points less than the comparison
value.

• __not_gt is true if the field does not
contain any points greater than the
comparison value.

Indexing Range Fields.

• Range fields support GIST (General Index
Storage Technique) indexes.

•CREATE INDEX ON app_model USING
GIST(field);

• Accelerates all of the comparison
operations listed, woo-hoo!

A Hard Problem.

• “Don’t allow two bookings to be inserted
into the database for the same room where
the dates overlap.”

• There’s no way to express this using
traditional UNIQUE constraints.

• Constraint Exclusion to the rescue!

Constraint Exclusion.

• A generalization of the idea of UNIQUE
indexes.

• “Don’t allow two equal entries, based on
this set of comparison operations, into the
table.”

• The operations can be any index-supported
boolean predicate; they’re ANDed together.

One Catch.

• It has to be a single index.

• Since RANGE types require a GIST
index…

• The index has to be a GIST index.

• By default, simple scalar values don’t have
GIST indexing. Uh, oh.

btree_gist to the rescue!

• Allows the creation of GIST indexes on
(most) simple scalar types.

• PostgreSQL extension, part of contrib.

• Has to be installed in the database, but:

• Ships with PostgreSQL.

• Use the CreateExtension migration
operation.

How would we use this?

from django.db import models
from django.contrib.postgres.fields import DateRangeField

class Booking(models.Model):
 room = models.CharField(max_length=4)
 dates = DateRangeField()

Which gives us…

xof=# \d reservations_booking
 Table
"public.reservations_booking"
 Column | Type |
Modifiers
--------+----------------------
+---

 id | integer | not null default
nextval('reservations_booking_id_seq'::regclass)
 room | character varying(4) | not null
 dates | daterange | not null
Indexes:
 "reservations_booking_pkey" PRIMARY KEY, btree (id)

And add constraint index…

xof=# CREATE EXTENSION btree_gist;
CREATE EXTENSION
xof=# ALTER TABLE public.reservations_booking ADD EXCLUDE
USING gist (room WITH =, dates WITH &&);
ALTER TABLE

And profit!

>>> Booking(room='123', dates=DateRange(date(2015,9,1),
date(2015,9,2))).save()
>>> Booking(room='123', dates=DateRange(date(2015,9,2),
date(2015,9,7))).save()
>>> Booking(room='127', dates=DateRange(date(2015,9,2),
date(2015,9,7))).save()
>>> Booking(room='123', dates=DateRange(date(2015,9,5),
date(2015,9,9))).save()
(blah blah blah)
IntegrityError: conflicting key value violates exclusion
constraint "reservations_booking_room_dates_excl"
DETAIL: Key (room, dates)=(123, [2015-09-05,2015-09-09))
conflicts with existing key (room, dates)=(123,
[2015-09-02,2015-09-07)).

Why use range fields?

• To represent ranges.

• You probably figured that one out.

• More natural than the traditional (lo, hi)
field pair.

• More database integrity and interesting
operations available.

hstore Fields.

JSON Fields.

• New in 1.9.

• Fields that support arbitrary JSON
structures.

• Stored as jsonb in PostgreSQL.

JSON Field Queries.

• Supports __contains and __contained_by.

• Both key and value must match.

• __has_key matches fields containing a
particular key.

• __has_keys matches fields containing all of
the keys (takes a list).

• __has_any_keys matches fields with any of
the keys (takes a list).

JSON Field Queries.

• Can do path-type queries:

•Dog.objects.filter(data__owner__name='Bob')

• Can use array indexes:

•Dog.objects.filter(data__owner__other_pets__0
__name='Fishy')

JSON vs JSONB.

• PostgreSQL has two JSON types: json and
jsonb.

• json stores the raw text of the json blob,
whitespace and all.

• jsonb is a compact, indexable
representation.

Why use json instead of jsonb?

• json (vs jsonb) is faster to insert, since it
doesn’t have to process the data.

• json allows for two highly dubious
“features” (duplicate object keys, stable
object key order).

• OK if you are just logging json that you
don’t plan to extensively query.

Why use jsonb instead of json?

• All other applications want jsonb.

• jsonb can be indexed in useful ways, unlike
json.

• The JSONField field type uses jsonb, so just
roll with it.

Indexing JSON.

• jsonb has GIN indexing.

• Default type supports queries with the @>,
?, ?& and ?| operators.

• The query must be against the top-level
object for the index to be useful.

• Can query nested objects, but only in paths
rooted at the top level.

Why use JSON?

• Logging JSON data.

• Audit tables that work across multiple
schemae.

• A friendly (and safer) way of pickling
Python objects.

• User-defined attributes and rare fields, a la
hstore.

Other goodies.

• Admin widgets to go with many of the new
types.

• hstore and JSON widgets are really only
good for debugging.

Full-Text Search!

• PostgreSQL has had integrated full-text
search for a long time.

• Django 1.10 contains model-level support
for it.

• First, some concepts…

tsvector

• A “tsvector” is a block of text (blog entry,
journal article) encoded for full-text search.

• Built-in PostgreSQL type.

• Turning text into a tsvector requires a
“configuration,” which includes things like
language, stemming algorithm, list of stop
words.

Full-Text Configurations

• PostgreSQL has a bunch of built-in
configurations.

• Generally, just use those; making your own
configuration is extra-for-experts.

• ‘english’ is a good example configuration.

to_tsvector

• Function that takes text, returns a tsvector.

•to_tsvector(‘english’, my_big_text_field)

• Django calls this under the hood for you (in
most situations).

__search

• Searches a text field using full-text
searching.

• Calls to_tsvector for you.

• Without indexes, does a sequential scan.

•Entry.objects.filter(body_text__search='Cheese')

SearchVector

• Represents a tsvector object in Django.

• Lets you search more than one field at a
time by combining them into a single
tsvector.

• Merging and searching happen as the query
runs (which can be expensive).

SearchQuery

• Represents a PostgreSQL tsquery object.

• Translates words into queries, using
stemming, etc.

• Can be combined to form boolean
predicates:

•SearchQuery('potato') & SearchQuery('ireland')

•SearchQuery('potato') | SearchQuery('penguin')

SearchRank

• Exposes the PostgreSQL ranking function.

• You can use it as annotation:

•Entry.objects.annotate(rank=  
SearchRank(vector, query)).order_by('-rank')

Lots more!

• Changing the rank weight of specific fields
(weight title more heavily than body, etc.).

• Using different search configurations
(different languages).

Indexing.

• For reasonable performance, you have to
index fields.

• If you are searching on one field, in one
language, a simple index will work:

•CREATE INDEX ON t USING GIN
(to_tsvector(‘english’, f));

Fancy Indexing.

• Combining multiple fields…

• … possibly with different weights.

• Create a separate tsvector field out of the
fields.

• Django provides SearchVectorField for just
this application.

Maintaining a SearchVectorField.

• Update it on each model instance change in
the application (override save(), etc.).

• Use a trigger in PostgreSQL
(recommended).

• See PostgreSQL documentation for details
on building this trigger.

Bits and Bobs.

• PostgreSQL-specific aggregation functions
(such as StringAgg).

• TransactionNow() function (returns time of
transaction start).

• The unaccent filter which you can read
about in the documentation.

Coming Soon!

• Django 1.11 includes:

• Model-level creation of GIN and BRIN
indexes.

• Built-in support for the citext contrib/
extension.

• Lots more!

Questions?

Thank you!

Christophe Pettus
thebuild.com
cpettus@pgexperts.com
@xof

mailto:cpettus@pgexperts.com

