
thebuild.com
pgexperts.com

Very, Very Fast Django

Christophe Pettus
PostgreSQL Experts, Inc.

Who?

• Christophe Pettus. Hi!

• pgexperts.com

• thebuild.com

• @xof

• christophe.pettus@pgexperts.com

mailto:christophe.pettus@pgexperts.com
mailto:christophe.pettus@pgexperts.com

What is this talk?

• PostgreSQL Experts, Inc. is a database
consultancy.

• You probably guessed that.

• We also have an applications development
practice.

• We mostly do Django development.

Go Faster Button.

Tales from the battlefield.

• We have clients who have very, very large
Django sites.

• We’ve collected a lot of wisdom on how
they managed to keep their sites up.

• This talk is a distillation of their wisdom.

• Others (especially us) have made all these
mistakes, so you don’t have to.

Structure.

• Tips and tricks.

• Things not to do.

• Please ask questions!

• Please disagree!

• And now, let’s start with…

How fast is
Django, anyway?

You hear things.

• “The ORM is incredibly slow.”

• “Django’s template engine isn’t as fast as
Jinja2 / PHP / JSP / this hand-coded C-
language thing from 1998.”

• “You can’t scale a Django site because the
only language I’ve ever learned is Ruby.”

When in doubt, measure.

• Basic timing tests on this very laptop.

• Using the development server.

• Very simple view functions and model.

• Django 1.6.4, out of the box.

The goal.

• How high-overhead are Django’s standard
components?

• Are they really slow, or are people using
them in slow ways?

• What are good and bad ways to use them?

Test 1: Empty HTTPResponse

• Just return HTTPReponse(“”).

• Both class-based and function based views.

• Utterly meaningless number…

• … but provides a baseline for the others.

Test 1: Empty HTTPResponse

0

1.25

2.5

3.75

5

Function Class

Milliseconds

Test 2: Create, save model objects

• Model object has nine fields.

• Most ORM operations are O(N) on the
number of fields.

• Create, do not save.

• Create, save.

Test 2: Create, save model objects

0

3.75

7.5

11.25

15

Empty Instantiate Save Save 100

Milliseconds

Test 3: Template rendering.

• Render templates of a variety of
complexity.

• Includes loading 1-20 objects as the source
for the render.

Test 3: Template rendering.

0

5

10

15

20

Empty (1) One Field (1) 64 Fields (1) One Field (20)

Milliseconds

Test 4: Raw SQL vs ORM

• Use raw SQL (cursor.execute) to retrieve
data instead of the ORM.

• 20 rows, one field.

Test 4: Raw SQL vs ORM

0

3.75

7.5

11.25

15

One Field (20) ORM One Field (20) SQL

Milliseconds

Test 5: Update 10 objects

• ORM using iteration.

• Don’t do this.

• ORM using QuerySet.update

• Raw SQL using cursor.execute

Test 5: Update 10 objects

0

7.5

15

22.5

30

Iteration ORM Update SQLUpdate

Milliseconds

Test 6: Update 1000 objects

0

375

750

1125

1500

Iteration ORM Update SQL Update

Milliseconds

Test 7: Middleware Stack.

• Run empty requests with and without the
standard middleware stack.

Test 7: Middleware Stack.

0

1.25

2.5

3.75

5

With Without

Milliseconds

So, what do we know?

• Django’s basic request loop is plenty fast.

• Request/response cycles to the database
generally swamp everything else.

• Always do bulk and batch operations
without having to retrieve each model
individually.

• The ORM’s performance isn’t that bad.

Don’t Hoard.

Don’t use components you don’t need.

• If you only need one (1) feature, just
implement that one feature?

• Do you really need an entire REST
library, or just a JSON parser?

• Be aware of per-request overhead.

• Middleware should be your last resort.

But…

• Be aware that components often have
hidden benefits.

• Correct implementation of weird
protocols, common security hole
resistance, etc.

Caching.

There are only two hard things…

• There are only two hard things in
computer science:

• Naming things.

• Cache invalidation.

• Off-by-one errors.

Much caching. So complex.

• Front-end caching (nginx, Varnish).

• Template-render caching (whole page,
fragments).

• Intermediate result processing (query sets,
results of calculations).

• Database-level caching (materialized views,
denormalized persistent tables).

First, measure.

• Don’t just throw everything at the wall and
see what sticks.

• Caches will be inconsistent and invalid.

• Find ways to allow for it, rather than
building impossible-to-maintain
invalidation architecture.

Start low, work up.

• Start with data-level caching, and work up
from there.

• Easier to understand (generally), easier to
come up with good invalidation models
(almost always).

There’s always an exception.

• Highly content-focused sites.

• CMS-type publication sites.

• Focus on template-level rendering and full-
page caching.

• Accept a very flexible invalidation model.

Thundering herd problem.

• An invalidated cache results in every new
request trying to rebuild the cache.

• Always separate delivery and cache
rebuilding.

• Try to allow for return of stale results
rather than rebuilding on the fly.

Template caching.

• Template rendering time is proportional to
the number of variables and the number of
files.

• Complex, deep templates can take time to
render.

• But “time” is in milliseconds, not in days.

Keep calm and do time-based rebuilds.

• Do not become obsessive about only re-
rendering when absolutely required.

• If a template requires 400ms to re-
render…

• … rendering it once a minute is no big
deal.

Tips ‘n’ Tricks

The (Very)
Front End

Front-end servers.

• Everyone obsesses about them.

• They don’t matter.

• No, really, they don’t matter.

• Once you’ve fixed everything else, worry
about that.

• You’ve never fixed everything else.

OK, OK, fine.

• ngnix.

• uWSGI.

• wsgi (rather than http) protocol.

• You now have a slide you can show your
boss.

• It’s from an expert!

Processes vs Threads

• No clear guidelines for how to configure.

• Rule of thumb:

• Processes = CPU execution units.

• Threads = 2-4, more for high-blocking
applications.

The speed of light.

• The public Internet is far slower than your
code.

• If it’s not, well, fix that!

• The link between your application and the
user’s browser is, by far, the slowest part of
your application.

Party like it’s 1999.

• Most of the time processing a request is
after the first byte is received by the client.

• Keeping web pages small, clean and light will
make more difference than almost anything
else.

• Use HTML Boilerplate, Twitter Bootstrap?
Trim, trim, trim to what you need.

Avoid “site pestering.”

• Avoid a large flurry of JavaScript requests
back to the server from the initial page.

• Each one has the full round-trip latency of
the first request.

• Reduce the amount of data you need to
get, and batch the calls together.

The browser is your frienemy.

• Always set sensible cache control headers
on your content.

• How often do you change that checkmark
graphic, anyway?

• Modern browsers are very aggressive about
caching: take advantage of it!

Use a CDN for static content.

• Serving common static content is a terrible
use of your bandwidth.

• CDNs can significantly improve your
overall page-load time.

• Don’t use for dynamic content: propagation
rates are just too slow.

• Use a caching CDN?

Things that look good, but aren’t.

• eTag

• OK for precomputed content, bad for
dynamic content.

• Template fragment caching

• Good for large, complex segments of a
template.

• Silly for small sections.

Use a front-end cache.

• ngnix, Varnish — or both!

• Use JavaScript and HTML5 local storage for
trivial customizations.

• Cookies defeat caching!

DNS Servers.

• A surprisingly large contributor to page-
load time.

• Use a specialist DNS service.

• EasyDNS is fast and cheap.

• Especially important if you have multiple
subdomains on a single page.

The View Layer

The view code.

c = Customer.objects.get(id=customer_id)

o = Orders.objects.filter(id=customer_id, order_id=order_id)

t = 0

for line in o.line_items:

 t += line.tax

s = o.shipping

if s > 0 then:

 # blah, blah blah.

Load everything into context!

The template.

{% cache 500 name %}
Hi, {{ c.first_name }}!
{% endcache %}

Template-first design.

• Let the template drive your data
acquisition.

• Don’t do ORM operations unless the
particular template expansion actually
needs it.

• Put QuerySets and callables, rather than
evaluated data, in the template contexts.

Cache everything.

• Django has extensive template caching
facilities. Use them.

• Cache full pages if you can.

• Cache (big, expensive) fragments if you
can’t.

• Always use a memory-based cache.

• memcached, Redis.

Cache results.

• QuerySets are serializable!

• Store them in an in-memory store.

• Redis is great for basic queues, etc.

• memcached if you only need a flat store.

Consider full prerendering.

• Build entire page and cache on disk.

• Let the web server serve it directly.

• Standard ngnix config will do this for you
with appropriate path settings.

• Or let ngnix or Varnish do the caching.

The “Hello, Bob” problem.

• A large static page with a very small
amount of customized content.

• Prerender the entire page, then use
Javascript callbacks for the customized part.

• Make one call, parse out the result.

Returning large files.

• Use X-Accel-Redirect or equivalent.

• Never hand the large file directly back
through Django.

• Never. Write it to disk if you have to.

• Especially important if using back-end
worker servers like gunicorn, uWSGI.

Middleware.

• Keep the middleware stack under control.

• Do you really need this to run on every
request?

• Don’t use TransactionMiddleware…

• Use atomic(). All the cool kids are.

Defer everything.

• Do not run asynchronous tasks in your
view functions.

• Send mail, fetch other sites, etc.

• Queue those for later processing.

• Queue synchronous tasks if they are long-
running.

• Generate a “best-guess” result first.

The Model Layer

Model-building.

• Keep models simple and focused.

• The ORM is O(N) on number of fields.

• Don’t be afraid of foreign keys.

• Do not have frequently-updated singleton
rows.

Fast vs slow data.

• A single logical object can have both “fast”
and “slow” sections:

• Username vs last access time.

• Separate these into different tables.

• Avoids a large class of foreign key locking
issues.

Result prefetching.

• QuerySets will fetch the entire database
result set the first time they need a single
row.

• … at least using psycopg2.

• Make sure database result sets are small.

• Do not rely on QuerySet slicing.

QuerySet caching.

• QuerySets retain their iterated-over results
until released.

• This can be a significant memory sink.

• Release QuerySets once you are done with
them.

• But if can you store the results for future
use? Do it.

Using transactions.

• Keep transactions short and to the point.

• Like any good writing, start as late as you
can, finish as early as you can.

• Never wait for an asynchronous event with
an open transaction.

More friendly advice.

• Do not iterate over large QuerySets…

• … especially while doing updates back to
the database.

• Do joins in the database, not in Python.

• Don’t be afraid of writing custom SQL if
that’s what it takes.

The Database

Databases are your friend.

• The database as such is rarely the
bottleneck.

• Round-trips to the database, however, are.

• Aggregate as much as possible into single
operations.

Do not do this.

• Store sessions in the database.

• Store your task queue in the database.

• Especially if your task queue runner polls
the database.

• (I’m looking at you, Celery.)

• Store high-volume data in an otherwise-
transactional database (clickstream, etc.)

Django 1.6 Persistent Connections.

• Use them.

• Connection opening overhead is significant.

• Does not always obviate the need for
pgbouncer.

• Remember that the database probably can’t
handle every connection being active at the
same time.

Database load balancing.

• If using PostgreSQL, use streaming
replication.

• Ideally designed for web-type read vs write
loads.

• How to route requests to the right
servers?

Django database routing.

• Use Django database routing to distribute
writes to the master, reads to the
secondaries.

• If more than one secondary, use pgPool II
or a TCP/IP-based load balancer
(HAProxy).

• Remember replication lag issues.

Summary!

I thought he’d never stop.

• Django can handle massive, server-melting
loads.

• There’s no one trick; it’s a collection of
small things and avoiding pitfalls.

• Focus on keeping your app lean.

• You can hardware your way out of
(almost) all the rest.

Thank you!

Questions?

@xof
thebuild.com

pgexperts.com

