
PostgreSQL and JSON:
2015

Christophe Pettus
PostgreSQL Experts, Inc.

FOSDEM 2015

Greetings!

• Christophe Pettus

• Consultant with PostgreSQL Experts, Inc.

• thebuild.com — personal blog.

• pgexperts.com — company website.

• Twitter @Xof

• christophe.pettus@pgexperts.com

mailto:christophe.pettus@pgexperts.com
mailto:christophe.pettus@pgexperts.com

Well, here we go again.

• My third year in a row talking about JSON
at FOSDEM.

• A lot has changed in the last year.

• PostgreSQL 9.4 has a ton of new JSON
features.

• Let’s take a look.

JSON, what is?

• JavaScript Object Notation.

• A text format for serializing nested data
structures.

• Based on JavaScript’s declaration syntax.

• Intended to be passed directly into
JavaScript’s eval() function (don’t do this!)

JSON Primitive Types.

• Strings, always Unicode.

• De facto, always UTF-8 in flight.

• Numbers, integer and float.

• Boolean: true and false.

•null

JSON Structured Types.

• Arrays, using [].

• Hash / dictionaries / whatever you want to
call them (the JSON spec calls them
Objects), using { }

• { ‘string’ : value }

• Keys have to be strings; values can be
anything.

More complex types.

• Everything else is built out of those.

• There’s no type declaration mechanism.

• “Object” is unfortunate terminology.

• There’s no “schema” or similar validation
method.

• Everything is delegated to the application.

The good…

• It’s super-simple to generate and parse.

• The operational part of the spec is five
pages, with diagrams.

• It’s the de facto standard for data
interchange in web APIs.

• POST format is still used, but apps that
do that are wrong.

The bad…

• No higher-level standards.

• How is a datetime represented? I dunno,
you figure it out.

• Remember SQL injection attacks? Now we
have JSON injection attacks.

• Don’t use eval(). Just. Don’t.

And PostgreSQL has JSON!

• It’s a core type.

• Not a contrib/ or extension module.

• Introduced in 9.2.

• Enhanced in 9.3.

• And really enhanced in 9.4.

We liked JSON so much…

• … we created two types.

• json

• jsonb

• json is a pure text representation.

• jsonb is a parsed binary representation.

• Each can be casted to the other, of course.

json type.

• Stores the actual json text.

• Whitespace included.

• What you get out is what you put in.

• Checked for correctness, but not
otherwise processed.

Why use json?

• You are storing the json and never
processing it.

• You need to support two JSON “features”:

• Order-preserved fields in objects.

• Duplicate keys in objects.

• For some reason, you need the exact JSON
text back out.

Oh, and…

• jsonb wasn’t introduced until 9.4.

• So, if you are on 9.2-9.3, json is what you’ve
got.

• Otherwise, you want to use jsonb.

jsonb

• Parsed and encoded on the way in.

• Stored in a compact, parsed format.

• Considerably more operator and function
support.

• Has indexing support.

They’re just types.

• Fully transactional, can have multiple json/
jsonb fields in a single table, etc.

• Uses the TOAST mechanism.

• Can be up to 1GB.

• Can be a NULLable field if you like.

Basic Operators
(both json and jsonb)
• -> gets a JSON array element or object

field, as JSON.

• ->> gets the array element or object field
cast to TEXT.

• #> gets the array element or object field at
a path.

• #>> … cast to TEXT.

jsonb only!

• @> — Does the left-hand value contain
the right-hand value?

• <@ — Does the right-hand value contain
the left hand value?

Containment

• Containment work at the top level of the
json object only, and on full JSON
structures.

• It does not apply to individual keys.

• It does not apply to nested elements.

@>
postgres=# select '{"a": 1, "b": 2}'::jsonb @> '{"a": 1}'::jsonb;
 ?column?

 t
(1 row)

postgres=# select '[1, 2, 3]'::jsonb @> '[1, 3]'::jsonb;
 ?column?

 t
(1 row)

postgres=# select '{"a": {"b": 7, "c": 8}}'::jsonb @>
 '{"a": {"c": 8}}'::jsonb;
 ?column?

 t
(1 row)

but.

postgres=# select '{"a": {"b": 7}}'::jsonb @> '{"b": 7}'::jsonb;
 ?column?

 f
(1 row)

postgres=# select '{"a": 1, "b": 2}'::jsonb @> '"a"'::jsonb;
 ?column?

 f
(1 row)

?, ?|, ?&

• True if:

• ? — The key on the right-hand side
appears in the left-hand side.

• ?| ?& — Any of the array of keys on the
right-hand side appear on the left-hand
side.

• PostgreSQL array type, not JSON array.

?, ?|, ?&
postgres=# select '{"a": 7, "b": 4}'::jsonb ? 'a';
 ?column?

 t
(1 row)

postgres=# select '{"a": 7, "b": 4}'::jsonb ?& ARRAY['a', 'b'];
 ?column?

 t
(1 row)

postgres=# select '{"a": 7, "b": 4}'::jsonb ?| ARRAY['a', 'q'];
 ?column?

 t
(1 row)

but.
postgres=# select '{"a": {"b": 7, "c": 8}}'::jsonb ? 'b';
 ?column?

 f
(1 row)

postgres=# select '[1, 2, 3, 4]'::jsonb ?| ARRAY[1, 100];
ERROR: operator does not exist: jsonb ?| integer[]
LINE 1: select '[1, 2, 3, 4]'::jsonb ?| ARRAY[1, 100];
 ^
HINT: No operator matches the given name and argument type(s). You might
need to add explicit type casts.

postgres=# select '[1, 2, 3, 4]'::jsonb ?| '[1, 2]'::jsonb;
ERROR: operator does not exist: jsonb ?| jsonb
LINE 1: select '[1, 2, 3, 4]'::jsonb ?| '[1, 2]'::jsonb;
 ^
HINT: No operator matches the given name and argument type(s). You might
need to add explicit type casts.

JSON functions

• Lots and lots and lots.

• Create JSON from records, arrays, etc.

• Expand JSON into records, arrays, rowsets,
etc.

• Many have both json and jsonb versions.

Example: row_to_json

• Accepts an arbitrary row.

• Returns a json (not jsonb) object.

• For non-string/int/NULL types, uses the
output function to create a string.

• Properly handles composite/array types.

Behold!

xof=# select row_to_json(rel.*) from rel where array_length(tags, 1) > 2 order
by id limit 3;
 row_to_json
--

 {"id":636572,"first_name":"OLENE","last_name":"OGRAM","tags":
["female","square","violet"]}
 {"id":636744,"first_name":"SHAYNE","last_name":"GALPIN","tags":
["female","square","silver","aquamarine","green","octogon"]}
 {"id":636769,"first_name":"YASMIN","last_name":"AKEN","tags":
["female","red","green"]}
(3 rows)

But seriously…

• … can be used in a trigger to append to an
audit table regardless of the schema.

• Extremely useful for shared triggers.

Example: jsonb_each_text

• Takes a jsonb object, and returns a rowset
of key/value pairs.

• Returns each as text object.

• Can be used to write the world’s most
expensive EAV query!

Behold!

xof=# WITH s AS (
xof(# SELECT row_to_json(rel.*)::jsonb AS j FROM rel ORDER BY id LIMIT 3
xof(#) SELECT (s.j->>'id')::bigint AS entity, key as attribute, value FROM s,
LATERAL jsonb_each_text(s.j) WHERE key <> 'id';
 entity | attribute | value
--------+------------+------------
 636526 | tags | ["female"]
 636526 | last_name | EILTS
 636526 | first_name | REGENA
 636527 | tags | ["male"]
 636527 | last_name | POTO
 636527 | first_name | ANTONIO
 636528 | tags | ["female"]
 636528 | last_name | LUFSEY
 636528 | first_name | ROXY
(9 rows)

But that would
be wrong.

But seriously…

• … it can be used to expand jsonb into
relational data for JOINs and the like.

• Often more efficient than using the
extraction operators.

Indexing.

Indexing json

• The textual json type has no inherent
indexing (that you’d ever use).

• Can do an expression index on extracted
values…

• … but that requires knowing exactly which
fields / elements you are going to query on.

jsonb indexing.

• jsonb has GIN indexing.

• Default type supports queries with the
@>, ?, ?& and ?| operators.

• The query must be against the top-level
object for the index to be useful.

• Can query nested objects, but only in paths
rooted at the top level.

jsonb_path_ops

• Optional GIN index type for jsonb.

• Only supports @>.

• Hashes paths for each item, rather than just
storing the key itself.

• Faster for @> operations with nesting.

jdoc @> '{"tags": ["qui"]}'

• Both index types support this.

• jsonb_ops (the default) will seach for
everything that has “tags”, has “qui”, AND
them, and then do a recheck for the path
structure.

• jsonb_path_ops will go directly to entries
for that path.

Which to use?

• If you just need @>, jsonb_path_ops will
probably be faster.

• If you need the other supported
operators, you need jsonb_ops.

• But let’s find out!

Test results.

The Usual Caveats

• The universe of possible workloads and
schemas is infinite.

• Always build and test using data that
simulates your real application.

• Don’t take these results as being applicable
to every situation.

• Relative, not absolute results.

That said…

• Four column schema:

• id — Primary key, bigint.

• first_name, last_name — Text.

• tags — Array of short text tags. Two
extremely common ones (one per
record), a diminishing number of rare
ones.

The test setup.

• Amazon i2.2xlarge instance.

• Ubuntu.

• PostgreSQL 9.4.0.

• Basic tuning for instance size.

Test data.

• 10,000,000 records generated at random.

• Schemas:

• Pure relational data.

• hybrid (names in relational, tags jsonb).

• json and jsonb for non-ID.

Methodology

• 100 iterations per test, top and bottom 10
rejected.

• Query execution time only; does not
include time to return results.

• Python test harness can distort
considerably if objects need to be
created.

Test #1: Load

• Load 10,000,000 records using COPY.

• No index rebuilds.

• Relational, “hybrid,” all json, all jsonb.

0

7.5

15

22.5

30

Relational Hybrid json jsonb

Load Time (sec)

Test #1: Results

• Relational beats everything (no surprise).

• jsonb is slower to load than json.

• Parsing and conversion time.

• The same order of magnitude.

Test #2: Sequential scan for
a single last name.
• Scan table sequentially (no index) for a

single last name.

• Uses a relational field for relational and
hybrid.

• Uses ->> operator for json and jsonb.

• Also tried with @> operator for jsonb.

0

2500

5000

7500

10000

Relational Hybrid json jsonb jsonb @>

Query time (ms)

Test #2: Results.

• json dramatically slower than jsonb.

• Relational faster than jsonb by about 2x.

• ->> and @> operators roughly same speed
in this application.

Test #3: b-tree index
lookup by name.
• Create a traditional b-tree index.

• Directly on last_name for relational and
hybrid.

• Expression index on (jdoc->>‘last_name’)
for json and jsonb.

• Also tried GIN index on jsonb field, using
@>.

0

0.15

0.3

0.45

0.6

Relational Hybrid json jsonb jsonb GIN

Query time (ms)

Test #3: Results.

• All of comparable speed.

• jsonb actually faster than anything else!

• json somewhat slower due to extraction
overhead.

• Always the fastest way to look up a highly
selective field.

Test #3: Results, 2

• jsonb w/GIN very comparable to b-tree
index.

• Didn’t have to specify a particular field in
advance.

• Huge improvement over 9.3 days.

Test #4: Common tag
lookup by seq scan.
• Every record has a ‘male’ or ‘female’ tag,

50%/50%.

• Scan looking for all of one.

• Uses @> operator for tag array.

• Uses @> operator for jsonb.

• Also tried with a secondary table of tags to
which we join.

0

3750

7500

11250

15000

Relational Relation w/JOIN jsonb

Query time (ms)

Test #4: Results.

• Secondary join table a huge loss in this
scenario.

• jsonb slower than relational, but within the
same general range.

Test #5: Rare tag lookup by
seq scan.
• Scan for a rare tag (0.075% of records).

• Uses @> operator for relational.

• Uses @> operator for jsonb.

• Also tried with JOIN table.

• In both cases, JOIN table indexed on tag,
but didn’t use in seq scan case.

0

1000

2000

3000

4000

Relational Relation w/JOIN jsonb

Query time (ms)

Test #5: Results.

• Secondary join table a huge win in this
scenario.

• Unsurprising, since it can isolate the rare
tag faster.

• jsonb remains slower but comparable.

Test #6: Rare tag lookup by
index.
• Create a GIN index on relational array field

and jsonb document

• Use @> operator for tag array.

• Use @> operator for jsonb.

• Also tried with JOIN table.

0

100

200

300

400

Relational Relation w/JOIN jsonb

Query time (ms)

Test #6: Results.

• Relational fastest in this situation…

• … but jsonb performs comparably.

• If you are storing rare tags and don’t need
full JSON, consider an array field.

Note: GIN indexes and
selectivity.
• GIN indexes on jsonb fields have hard-

wired selectivity calculations (as of 9.4).

• Will almost always use the index even if
selectivity is very low.

• This can result in bad performance in cases
of low selectivity.

• An area that definitely needs attention.

Test #7: Index Creation.

• Timed index creation for the various index
types.

• last_name b-tree on relational.

• GIN on relational array.

• GIN json_ops and json_path_ops on jsonb.

0

25

50

75

100

B-Tree GIN Array GIN json_ops GIN json_path_ops

Build time (sec)

Test #7: Results.

• GIN build time is very fast.

• json_path_ops build time is very fast.

• GIN indexing on arrays, too.

Test #8: Relation size.

• Total size, excluding indexes.

• For relation + JOIN table, includes JOIN
table as well.

0

375

750

1125

1500

Relational Relational+JOIN Hybrid JSON JSONB

MB

Test #8: Results.

• Generally comparable size.

• hybrid is the most compact by a significant
margin.

• jsonb slightly larger than json due to
internal structure overhead.

Test #9: Index size.

• Size of various indexes.

• Primary key index (same for all tables).

• GIN index on relational tags.

• json_ops

• json_path_ops

0

75

150

225

300

Primary Key Relational Tags hybrid GIN json_ops json_path_ops

MB

Test #9: Results.

• Indexes on just the tags are very compact.

• json_path_ops indexes are (as expected)
somewhat smaller than json_ops indexes.

Now that we know
this, what do we

know?

The One-Slide
Oversimplification.
• Use relational data for the basic set of

attributes.

• Use either array fields or jsonb for
extended attributes.

• Use file-system storage for really big stuff.

• Always use jsonb. No reason to use json.

The Future

PL/V8

• Technically, not the future: Available now!

• Google’s V8 Javascript engine as a
PostgreSQL PL.

• Very, very fast.

• A somewhat tedious build and install
process.

Jsquery

• A query language for handling nested
structures.

• select count(*) from jb where jb @@
'*.term = "NYC"';

• Available now as an extension for 9.4

• https://github.com/akorotkov/jsquery

https://github.com/akorotkov/jsquery
https://github.com/akorotkov/jsquery

VODKA

• New indexing architecture to support
nested structures.

• An indexing infrastructure, not a set of
query operators.

• An improvement on GIN (depending on
the brand, I guess).

• Work-in-progress.

ToroDB

• A document-oriented database layered on
PostgreSQL.

• Sorts documents out into relations for
speed.

• Speaks the MongoDB wire protocol.

• https://github.com/torodb/torodb

https://github.com/torodb/torodb
https://github.com/torodb/torodb

And here we are!

• PostgreSQL 9.4 has world-beating JSON
support.

• Mix and match! Use JSON for what is good
for, relational data for speed.

• We’re much faster than MongoDB, by the
way. Just saying.

Thank you!

Questions?

• thebuild.com — personal blog.

• pgexperts.com — company website.

• Twitter @Xof

• christophe.pettus@pgexperts.com

mailto:christophe.pettus@pgexperts.com
mailto:christophe.pettus@pgexperts.com

