
Writing a Logical
Decoding Plug-In.

Christophe Pettus
PostgreSQL Experts, Inc.

FOSDEM 2015

Hello!

• We’re going to talk about logical decoding
in PostgreSQL.

• Christophe Pettus, pleased to meet you.

• PostgreSQL person since 1997.

• Consultant with PostgreSQL Experts, Inc.,
in sunny San Francisco (more rain, please).

A Voyage of Discovery.

• Logical decoding is a brand-new feature in
PostgreSQL 9.4.

• The people who best understand it are the
core developers who implemented it.

• I’m not one of those.

• So, let’s explore this fascinating new world
together.

The Problem.

• Something changes on one database server.

• We want that change to appear on another
database server.

• Seems pretty straight-forward, yes?

Why do we want this?

• A server to fail over to if the first one dies.

• Pushing transactional information to a data
analysis system.

• Distributing centrally-generated
information to peripheral systems.

• Multi-master scaling, one could dream.

So, how can we do this?

• Our options circa 2014 were:

• WAL shipping.

• Streaming replication.

• Trigger-based replication.

WAL shipping.

• The only in-core solution before 9.0.

• Secondary database servers read WAL files
generated by a primary.

• Applying those WAL files, it stays in sync
with the primary.

• Great! Problem solved!

Uh, no, not really.

• Secondary can do nothing (not even
queries) except read WAL segments.

• Each secondary can only read from a single
primary.

• No selectivity: The entire database cluster
is replicated.

• Pretty much only good for failover.

Other WAL shipping issues.

• Only as good as the last WAL file sent over.

• WAL file management is a pain in the neck.

• … especially for multiple secondaries.

• No synchronous replication.

• You can lose committed transactions.

Streaming Replication to
the rescue!
• Secondary connects directly to the primary.

• WAL information is streamed over as it is
generated.

• Secondary (can) stay very close to the
primary.

• Synchronous replication possible if you
don’t mind the throughput penalty.

Problem solved!

• Uh, no, sorry.

• Secondaries can take reads, but not writes.

• It’s still all-or-nothing.

• Long disconnections can require that they
be re-initialized.

Fine. How about slony?

• … or Bucardo, or Londiste, or…

• Installs triggers on tables to track changes.

• Triggers fire on data changes, add deltas to
queues.

• Daemons drain the queues, distribute the
changes to secondary machines.

Sounds promising!

• Changes operate on a logical (INSERT,
DELETE, UPDATE) level, not at the WAL
level.

• Can replicate a subset of the cluster: just
some database, just some tables.

• No (theoretical) limit to replication
topology.

Problem solved!

• Well, sorta.

• Triggers are not free.

• One more moving part.

• Schema changes don’t (currently) fire
triggers, so have to be applied “by hand.”

• Not in core.

Aaaand…

• … notoriously fiddly to set up and keep
running.

• … each have their own quirks and
limitations.

• … not general-purpose frameworks for
other possible tasks, like auditing.

What would be great
would be…
• … if we could get a stream like the

streaming replication stream…

• … but on the logical level, rather than WAL
pages.

• … and then we could do whatever we
want with it.

Behold: Logical Decoding.

• A framework in PostgreSQL, not a specific
tool.

• Decodes the WAL stream back into
INSERT / UPDATE / DELETE-level
statements.

• Not the exact statements, but ones
corresponding to the changes done.

New feature, new concepts.

• Logical decoding introduces some new
concepts.

• Slots.

• Output plug-ins.

The World Before Slots.

• Pre-9.4, replication was driven by the
secondary.

• The secondary connected to the primary.

• The secondary told the primary where it
needed the stream to start.

• The primary started streaming, or told the
secondary that it was out of luck.

Enter Slots.

• Brand new 9.4 feature.

• A named structure in the primary server.

• Optional for WAL-based (physical)
streaming replication.

• Required for logical streaming replication.

• Can be created either in advance, or by the
secondary on connection.

Physical Replication Slots.

• In essence, a persistent record of WAL
position.

• Once activated, prevents WAL removal on
the primary if the secondary hasn’t
received it.

• More accurate WAL cleanup.

• A whole new way to run out of disk space.

Logical Replication Slots.

• A “pipe” that receives a continuous stream
of logical changes.

• The “end” of the pipe is an output plug-in.

• The output plug-in takes the logical stream,
and does whatever it wants to it.

• The output of the plug-in (not the stream
itself!) is sent to the client.

Output plug-ins…

• … are bits of C code that respond to
function calls.

• The logical replication stream is that
series of function calls.

• Loaded into PostgreSQL as shared libraries.

• Not inherently complex! Mostly just a lot
of C-level push-ups to deal with.

When are changes decoded
(part 1)?
• The output plug-in is only called when

there is a consumer for the changes.

• Either a consumer is connected via to a
replication slot, or one of the
pg_logical_slot_get_changes() family is called.

When are changes decoded
(part 2)?
• Decodes only happen when a transaction

has been flushed to disk.

• even if synchronous_commit = off

• Always in transaction commit order.

• Each transaction is decoded before moving
on to another one.

• No “interleaved” transactions.

What can an output plug-in
write?
• Pretty much anything it wants.

• By default, it is assumed to write a bytea
stream.

• If it writes text in the current server
encoding, it can declare that.

• It’s up to the consumer to deal with
whatever the output plug-in generates.

Creating a slot.

xof=# select
pg_create_logical_replication_slot('test_slot',
'test_decoding');
pg_create_logical_replication_slot

 (test_slot,0/32009880)
(1 row)

Once a slot is created…

• … no WAL records are cleaned up until
they are no longer required.

• This means that if you create a slot but no
client ever connects…

• … no WAL records are ever cleaned up.

LET ME SAY THAT AGAIN.

• If you create a replication slot but no
consumer connects…

• WAL segments will be kept FOREVER.

• And you WILL RUN OF OUT DISK
SPACE.

• So DON’T DO THAT.

Flow of Execution.

• Consumer calls slot asking for output.

• PostgreSQL determines last WAL position
for that slot.

• Decodes the WAL and calls the output
plug-in repeatedly, collecting output from it.

• Transmits that output to the consumer.

• Lather, rinse, repeat.

What data is sent?

• Only completed transactions that have
been flushed to disk are sent to the output
plug-in.

• No partial transactions.

• No rolled-back transactions.

• No transactions that haven’t yet been
flushed.

Savepoints?

• Only the final transaction state is
streamed, so…

• All committed/rolled-back savepoints are
“smoothed out” in the data stream.

Example: We have this
table.
xof=# \d t
 Table "public.t"
 Column | Type | Modifiers
--------+---------
+--
 pk | integer | not null default
nextval('t_pk_seq'::regclass)
 z | text |
Indexes:
 "t_pkey" PRIMARY KEY, btree (pk)

So, we do an INSERT.

xof=# INSERT INTO t(z) VALUES('foo');
INSERT 0 1

And we look at the output.

xof=# SELECT * FROM
pg_logical_slot_get_changes('test_slot', NULL, NULL,
'include-xids', '0');
 location | xid | data
------------+------
+---
 0/320499F0 | 4983 | BEGIN
 0/320499F0 | 4983 | table public.t: INSERT: pk[integer]:
1 z[text]:'foo'
 0/32049B38 | 4983 | COMMIT
(3 rows)

What you have to write.

• _PG_output_plugin_init

• pg_decode_startup

• pg_decode_shutdown

• pg_decode_begin_txn

• pg_decode_commit_txn

• pg_decode_change

test_decoding

• Sample logical decoding plugin in contrib/.

• Gives a lot of useful boilerplate on how to
write a plugin.

• Follow along if you want!

• Use it as a template; don’t bother starting
with an empty .c file.

_PG_output_plugin_init

• This function must have this particular
name.

• Used to supply the addresses of the other
callback functions to the framework.

• The other functions can have whatever
names you want.

• You have to specify all of them.

pg_decode_startup

• Called when the plugin is “started.”

• A plugin is started when a slot is created or
a consumer connects.

• The same plugin is used multiple times for
multiple slots.

• You’ll get called for each consumer
connection.

pg_decode_startup
parameters.
• LogicalDecodingContext: Includes a place

for your stuff. Never store state anywhere
else!

• OutputPluginOptions: The options
specified with this particular stream.

• is_init: True on slot creation; false when a
new consumer connects to the slot.

pg_decode_startup timing.

• Called each time a consumer connects.

• Each pg_logical_slot_get_changes counts as
a “connection.”

• Options are specified on the get_changes
calls, not at slot creation time.

• So, each call could have different options.

pg_decode_shutdown

• Called when the framework is done
streaming changes to the plugin.

• Either at the end of a get_changes call, or
when the consumer disconnects.

• Release everything you’ve allocated; no
telling when you might be called again.

pg_decode_begin_txn

• Called when a transaction begins.

• Called even for single-statement
transactions.

• Note that empty transactions are both
possible and (at the moment) quite
common.

pg_decode_commit_txn

• Called on commit.

• Note that the plug-in is never called for
rolled-back transactions.

pg_decode_change

• The fun part!

• Called once per tuple, per operation.

• Currently: INSERT, UPDATE, DELETE.

• Corresponds to the logical change, not to
the actual SQL statement executed.

pg_decode_change
parameters
• LogicalDecodingContext: A way to get your

private data.

• ReorderBufferTXN: Info about the open
transaction.

• Relation: The relation the tuple belongs to.

• ReorderBufferChange: The change itself.

ReorderBufferChange*
change
• change->action: specifies if it is an INSERT,

UPDATE, DELETE.

• change->data.tp.newtuple has the new
tuple data for INSERT and UPDATE.

• change->data.tp.oldtuple has the old tuple
data for DELETE.

Caveats…

• … always be prepared for data.tp.newtuple
and data.tp.oldtuple to be NULL.

• newtuple is the whole tuple, regardless of
what has changed, except unchanged
TOASTed data.

What do we get on an
UPDATE?
xof=# SELECT * FROM
pg_logical_slot_get_changes('test_slot', NULL, NULL,
'include-xids', '1');
 location | xid |
data
------------+------
+--

 0/3204A090 | 4986 | BEGIN 4986
 0/3204A090 | 4986 | table public.t: UPDATE: old-key:
pk[integer]:1 new-tuple: pk[integer]:7 z[text]:'bar'
 0/3204A1E0 | 4986 | COMMIT 4986
(3 rows)

REPLICA IDENTITY

• New ALTER TABLE option in 9.4.

• Controls what data is presented to the
plug-in on an UPDATE or DELETE.

• DEFAULT is primary key values, if they
changed.

• FULL, NOTHING, USING INDEX.

tuples.

• You are getting pointers to standard
PostgreSQL tuple structures.

• Can only be decoded using the Relation’s
TupleDesc structure.

• See tuple_to_stringinfo in test_decoding.c
for an example of how to iterate through
the tuple structure.

Writing.

• Once you have something to say, how do
you say it?

• Two output functions:

• OutputPluginPrepareWrite

• OutputPluginWrite

OutputPluginPrepareWrite

• Called before doing any output in any
callback function.

• Parameters:

• ctx: The context.

• last_write: true if the subsequent write is
the last one in this callback invocation.

Writing.

• ctx->out is a StringInfo; just append to that.

• You can use the standard PostgreSQL
StringInfo functions.

• You can append to it multiple times after
calling OutputPluginPrepareWrite.

• When done…

OutputPluginWrite

• Called to indicate that output can be sent
to the consumer.

• Two parameters:

• ctx: Our friend, the context.

• last_write: If true, done with writing this
callback cycle. Must match the value you
passed in OutputPluginPrepareWrite.

Output structuring.

• Output is transmitted to the consumer as
OutputPluginWrite is called.

• It is tagged with the WAL position and xid
it relates to.

• The decoded output is passed along as an
opaque byte string, and the consumer is
responsible for understanding it.

Restrictions.

• A plug-in cannot create an xid.

• Cannot modify any table.

• Can only read system catalogs (created
with init_db) or (new feature!) user catalog
tables.

• user_catalog_table = true

pg_recvlogical

• Utility to connect to and receive the
streaming output of a logical replication
slot.

• Streams the output to a file or stdout.

• Doesn’t process it; just stores it.

• Very handy for debugging; just tail the
output!

Now, the bad news.

• Brand new feature: Expect some lumps and
bumps.

• Schema changes are not passed to logical
decoding plugins (as of 9.4).

• Plugins link directly into PostgreSQL, and
can bring down the whole server.

• Slots can cause disk space exhaustion.

What can we do?

• Build slony-like replication engines that
don’t require triggers.

• Partial replication, filtered changes, multi-
master replication…

• Audit trails that don’t require local tables
(which can be compromised).

• Anything else you can think of!

Now, go crazy.

Thank you!

Questions?

• thebuild.com — personal blog.

• pgexperts.com — company website.

• Twitter @Xof

• christophe.pettus@pgexperts.com

mailto:christophe.pettus@pgexperts.com
mailto:christophe.pettus@pgexperts.com

