
PostgreSQL Performance…
when it’s not your job.

Christophe Pettus
PostgreSQL Experts, Inc.

PgDay  SCALE 10x
20 January 2012



Hi.

• Christophe Pettus

• Consultant with PostgreSQL Experts, Inc.

• http://thebuild.com/

• Got into being a DBA because no one else 
where I was working wanted to be.

http://thebuild.com
http://thebuild.com


The situation.

• You are a developer.

• Or system administrator.

• Or random passer-by.

• “Oh, we need PostgreSQL installed on that 
box.”



*This machine 

was bought in 

1997.

*It is running 

PostgreSQL 

9.1.2.

*Your argument 

is invalid.



The problem.

• “Sorry, no hardware upgrade budget.”

• “But that machine should be plenty, right?”

• “Oh, make sure the database runs really 
fast.”

• “You know, tweak some settings and add 
some indexes or something.”



Courage!

• We’ll assume your hardware can’t be 
changed.

• We’ll assume you don’t really want to be a 
full-time DBA.

• We’ll do the best we can under trying 
circumstances.

• What else can one do in life, really?



Le menu.

• Settings: Memory, I/O, CPU, others.

• Application-Level Stuff.

• Monitoring and add-ons.



OK, three slides on 
hardware.
• More (ECC) RAM is better, and…

• More cores are better, but consider your 
real concurrency, so…

• Spend the real money on I/O.

• RAID 1 for the transaction logs.

• RAID 1+0 for the data.

• Hardware RAID >> software RAID.



Considered harmful.

• Parity-disk RAID (RAID 5/6, Drobo, etc.).

• iSCSI, especially for transaction logs.

• The latency will kill you.

• SANs, unless you can afford multichannel 
fibre.

• Long network hauls between the app 
server and database server.



Special cases.

• If you can get RAM 2-3x your database 
size, do it.

• Largely read-only databases can use parity-
disk RAID effectively.

• If you are on a VM, remember the 
hypervisor takes both memory and CPU; 
allow an extra 15% RAM and 1 core for it.



Let’s be reasonable.

• PostgreSQL 9.0 or higher.

• If you are still on 8.x, upgrade already.

• At least 4GB of main memory.

• At least one big RAID 1 drive pair.

• “Big” means “30% or less full when 
everything’s on it.”



Only PostgreSQL on 
the box.
• This is the single easiest thing you can do 

to improve PostgreSQL performance.

• No mail server, web server, app server, 
LDAP server, massive JBOSS install...

• Messes up caching, steals CPU, eats 
memory and I/O… it’s just bad news.

• This includes host machines for VMs!



A note on parameter 
settings.
• Will try to be as quantitative as possible.

• Remember, different workloads will have 
different requirements.

• These are general guidelines and first cuts.

• YMWACV.



The PostgreSQL 
memory dance.
• Most of your memory should be available 

for file system cache.

• Don’t try to give PostgreSQL every last 
byte. It won’t appreciate it.

• “Somewhat more than just enough” is the 
right setting.



Memory types.

• File system cache

• Shared buffers

• Working memory

• Maintenance working memory

• Ancillary memory



File system cache.

• 30-50% of system memory should be 
available for file system cache.

• This is the level-1 disk cache for 
PostgreSQL.

• Don’t starve it! If you see it drop below 
30% of total, you need to free up memory.



Memory parameters.

• shared_buffers

• work_mem

• maintenance_work_mem

• effective_cache_size



Shared buffers.

• PostgreSQL’s private cache of disk pages.

• In a perfect world, the current working set 
of database disk pages would fit in here.

• Shared across all currently running 
PostgreSQL processes.

• Allocated in full as soon as PostgreSQL 
starts up.



Working memory.

• Memory used for sorts, hash joins, etc.

• If you see lots of temp files being created 
(check the logs), increase it.

• The default is almost certainly too low, 
BUT:

• It applies per planner node; you can use 
many times this much memory at once.



work_mem

• That’s not much use. How big, already?

• Big enough to cover 95% of temp files 
being created.

• Note that on-disk operations are smaller 
(byte for byte) than in-memory ones.

• So work_mem needs to be 2-3x the temp 
file size you are seeing.



work_mem, part 2

• Big, slow queries might be helped by more 
work_mem.

• Use EXPLAIN ANALYZE <query>, and 
look for on-disk operations.

• But remember! If you increase it system-
wide, any query might eat it up.

• Consider setting it per-session or per-
operation.



Quick show of hands.

• Everyone know about VACUUM, and why 
you do it?

• How about VACUUM FREEZE?

• And when should you do a VACUUM 
FULL?

• That’s right, never (well, almost never).



Maintenance working 
memory.
• Used mainly for VACUUM and related 

operations.

• Are your VACUUMs and autovacuums 
taking forever, or not finishing?

• Bump it up, but…

• 1GB is pretty much as high as you want 
to go.



Well, that didn’t work.

• Can’t give it enough memory for 
VACUUMs to finish?

• Consider doing a manual VACUUM (via 
cron) at low-demand periods.

• maintenance_work_mem can be set per 
session or per role.

• Create a VACUUM-specific superuser.



Ancillary memory.

• Per-connection, lock tables, prepared 
transactions, etc., etc.

• These days, these tend not be huge 
memory sinks.

• But if you feel like cranking 
max_connections above 200?

• Use pooling instead (hold that thought).



effective_cache_size

• One of these things is not like the other, 
one of these things, doesn’t belong.

• Does not allocate any memory.

• It’s just a planner hint.

• = file system cache + shared_buffers



I/O.

• This is generally where databases fall apart.

• Proper ACID compliance comes at a cost.

• That cost is paid in the currency of I/O 
operations per second.

• Ultimately, it’s up to the speed of the 
underlying storage subsystem.

• But you can help.



I/O parameters.

• wal_segments

• checkpoint_completion_target

• checkpoint_segments

• checkpoint_interval

• effective_io_concurrency



The write-ahead log.

• Every committed change to the database is 
written to the write-ahead log.

• Exceptions: Temporary and unlogged 
tables.

• Constant stream of write activity, broken 
into segments of 16MB each.

• Ideally, put it on its own set of disks (HD or 
SSD).



WAL parameters.

• Not much, really.

• wal_buffers can be bumped up to 8-16MB.

• But the big-deal activity is in checkpoints.



About checkpoints.

• A complete flush of dirty buffers to disk.

• Potentially a lot of I/O.

• Done when the first of two thresholds are 
hit:

• A particular number of WAL segments 
have been written.

• A timeout occurs.





But why?

• Well, the stuff has to get flushed sometime.

• Otherwise, it would have to replay the 
WAL segments from the beginning in case 
of a crash…

• … and that means you’d have to keep them 
all.

• … and it can take as long to replay as it did 
to create them.



The goal.

• Keep checkpoints from flooding the I/O 
subsystem.

• Background writer trickles out changes all 
the time.

• The various parameters interact in a 
complex way.

• That sounds too much like work.



Checkpoint 
parameters.
• checkpoint_segments will take 16MB x 

setting in disk space. Set it as high as you 
can afford (in disk space).

• Set checkpoint_timeout so that you will 
almost always hit checkpoint_segments 
first at high-load times. (30min? Measure.)

• Set checkpoint_completion_target to 0.9. 



What this does.

• Spreads the write activity out over 90% of 
checkpoint_timeout.

• You can’t actually reduce the amount of 
stuff it has to write…

• … you can just tell it to write it out more 
smoothly.





Caveat checkpointer.

• Assume a dirty restart of PostgreSQL will 
take as long as checkpoint_timeout to 
replay the pending logs.

• So, cap the values based on your pain 
tolerance there.



To reiterate.

• The checkpoint parameters do not change 
how much data PostgreSQL has to write.

• That’s purely a result of how much write 
activity your applications are creating.

• They do change the pattern of how it is 
written, however.



effective_io_concurrency

• Another planner hint.

• Set to the number of disks in a RAID array.

• Set to the number of channels in an SSD or 
SSD array.

• Sit back and watch it… well, it can help 
hash joins.



synchronous_commit

• PostgreSQL guarantees that data has been 
hardened on disk when COMMIT returns.

• Turning this off disables that guarantee.

• The database will not get corrupted.

• But transactions that were COMMITed 
might disappear on a dirty restart.

• Turn “off” if you can tolerate that.



fsync = on



CPU.

• PostgreSQL spawns one process per 
connection (plus some supporting utilities).

• More cores are better.

• Roughly, 2 concurrent queries per core.

• Boring! Let’s talk about the planner instead.



ANALYZE

• Collects statistics on the data to help the 
planner choose a good plan.

• Done automatically as part of autovacuum.

• Always do it manually after substantial 
database changes (loads, etc.).

• Remember to do it as part of any manual 
VACUUM process.



default_statistics_target

• PostgreSQL keeps a histogram of statistics 
for most columns in the table.

• This is the number of bins in that 
histogram. Default is 100.

• Crank it up a bit if you have lots of big 
tables.

• You can set it per column… and you 
should for key columns in big tables.



seq_page_cost vs 
random_page_cost
• A vague guestimate of how much more 

expensive it is to fetch a random page than 
a sequential page.

• Default is 4x (random_page_cost=4.0).

• Lower it for big RAID arrays, SSDs.



Logging.

• This one’s easy:

• Use the built-in logging collector.

• Use CSV logs.

• Keep at least 30 days of logs.

• They gzip down nice.



Logging.

• log_temp_files = 0

• log_checkpoints = on

• log_lock_waits = on

• log_min_statement_duration = …

• 100-250ms for interactive usage, 1-100s+ 
for data warehousing.



Special situations.

• Very write-intensive work loads.

• Very high-variability work loads.

• Repeatable bulk loads.



Write-intensive 
workloads.
• shared_buffers can be reduced.

• checkpoint_segments ++

• checkpoint_timeout ++

• synchronous_commit off, if you can handle 
the data-loss window.



Write-intensive 
workloads.
• If the load is has a large percentage of 

UPDATEs (vs INSERTs):

• bgwriter_lru_maxpages = 0

• autovacuum_cost_delay ++ (or consider 
disabiling in favor of manual VACUUM, 
see later).



Highly-variable 
workloads.
• Periods of very high demand, periods of 

very slack demand.

• If the cycles are short:

• bgwriter_delay ++

• checkpoint_segments ++

• checkpoint_timeout ++



Highly-variable 
workloads.
• If the periods are long (daily), in addition:

• autovacuum = off

• Do a manual VACUUM with large 
maintenance_work_mem during slack 
periods.

• Remember that you must do the manual 
vacuum regularly!



Repeatable bulk loads.

• Database can reinitialized in case of a 
failure.

• Use COPY or a dedicated tool.

• Create indexes at the end.

• This is the one time it is recommended to 
turn off fsync.

• Remember to turn it back on, OK?



Application stuff.

• Indexing

• SQL Pathologies

• Connection Management

• Workload Distribution

• Stupid Database Tricks



Indexing.

• What is a good index?

• A good index:

• … has high selectivity on commonly-
performed queries.

• … or, is required to enforce a constraint.



Indexing.

• What’s a bad index?

• Everything else.

• Non-selective / rarely used / expensive to 
maintain.

• Only the first column of a multi-column 
index can be used separately.



Indexing

• Don’t go randomly creating indexes on a 
hunch.

• That’s my job.

• pg_stat_user_tables — Shows sequential 
scans.

• pg_stat_user_indexes — Shows index 
usage.



SQL pathologies.

• Gigantic IN clauses.

• Expensive-to-process EXISTS clauses.

• Unanchored text queries like ‘%this%’; use 
the built-in full text search instead.

• Small, high-volume queries processed by 
the application.



Connection 
management.
• Opening a new connection is expensive.

• If you are getting more than 200 
connections regularly, consider a pooler.

• If you are getting more than 500, run, don’t 
walk.

• pgbouncer.



Workload distribution.

• Transaction processing / web app 
workloads do not mix with data 
warehousing workloads.

• Use 9.x’s streaming replication to create a 
read-only secondary to do the data 
warehousing.

• And you get an emergency backup for free!



Stupid Database Tricks.

• Sessions in the database.

• Constantly-updated accumulator records.

• Task queues in the database.

• Using the database as a filesystem.

• Frequently-locked singleton records.

• Very long-running transactions.



INSERT storms.

• INSERTs are a terrible way to do a bulk 
load.

• Use COPY instead.

• Most language drivers have a good interface 
to it.

• If it doesn’t, get a better driver.



Shiny on the outside.

• Prepared statements.

• Partitioning.



Prepared statements.

• Usually a “take it or leave it” situation with 
the particular language driver.

• They do not automatically improve 
performance.

• In fact, the most common situation is a 
total loss.

• Getting a benefit from them requires 
application participation.



Partitioning.

• Breaks a table up into a set of tables, based 
on a partitioning key.

• PostgreSQL can automatically direct (most) 
queries to the particular sub-tables for 
queries using the partitioning key.



Partitioning.

• Can be great IF:

• Data has a (near-) uniform distributed 
key that never changes.

• Data can be partitioned into equal(-ish)-
sized bins on that key.

• Queries always include that key.

• Queries almost always hit 1-2 bins.



BONUS CONTENT!
PostgreSQL on AWS
• Remember that instances can restart at any 

time.

• Remember that EBS mounts can just 
disappear.

• EBS performance is… variable.

• Instance storage is limited, expensive, and 
can evaporate even more readily than EBS.



AWS Survival Guide

• As much memory as you can afford.

• Two 8-way RAID-0 EBS mounts: One for 
the data, one for the transaction log.

• Don’t use instance storage for any database 
data; config is OK if you keep a snapshot.

• random_page_cost = 1.1

• Set up streaming replication.



Monitoring.

• CPU usage.

• Memory usage.

• I/O usage.

• Query times.

• Table growth.

• Table behaviors (last vacuum, etc.).



Tools.

• check_postgres

• Lovely script, Nagios-friendly.

• pg_stat_*

• PostgreSQL has lots of built-in views.



Add-Ons.

• PostgreSQL extensions:

• auto_explain

• pg_stat_statements

• Plenty of others:

• contrib/

• http://pgxn.org/

http://pgxn.org
http://pgxn.org


Questions?



Thanks.

cpettus@pgexperts.com
xof@thebuild.com

mailto:cpettus@pgexperts.com
mailto:cpettus@pgexperts.com
mailto:xof@thebuild.com
mailto:xof@thebuild.com

