
PostgreSQL
when it’s not your job.

Christophe Pettus
PostgreSQL Experts, Inc.

DjangoCon Europe 2012



The DevOps World.

• “Integration between development and 
operations.”

• “Cross-functional skill sharing.”

• “Maximum automation of development and 
deployment processes.”

• “We’re way too cheap to hire real 
operations staff. Anyway: Cloud!”



Thus.

• No experienced DBA on staff.

• Have you seen how much those people 
cost, anyway?

• Development staff pressed into duty as 
database administrators.

• But it’s OK… it’s PostgreSQL!



Everyone Loves 
PostgreSQL
• Robust, feature-rich, fully-ACID compliant 

database.

• Very high performance, can handle 
hundreds of terabytes or more.

• Well-supported by Python, Django and 
associated tools.

• Open-source under a permissive license.



But then you hear…

• “It’s hard to configure.”

• “It requires a lot of on-going maintenance.”

• “It requires powerful hardware to get good 
performance.”

• “It’s SQL, and everyone knows how old and 
boring that is. Also: It’s not WebScale™.”

• “Elephants scare me.”



We’re All Going To Die.



It Can Be Like This.



*This machine 

was bought in 

1997.

*It is running 

PostgreSQL 

9.1.3.

*Tell them: 

“Your 

argument is 

invalid.”



PostgreSQL when it is not 
your job.
• Basic configuration.

• Easy performance boosts (and avoiding 
pitfalls).

• On-going maintenance.

• Hardware selection.



Hi, I’m Christophe.

• PostgreSQL person since 1997.

• Django person since 2008.

• Consultant with PostgreSQL Experts, Inc. 
since 2009.

• Django guy.



No time to explain!



Just do this!



The philosophy of this talk.

• It’s hard to seriously misconfigure 
PostgreSQL.

• Almost all performance problems are 
application problems.

• Don’t obsess about tuning.



PostgreSQL configuration.

• Logging.

• Memory.

• Checkpoints.

• Planner.

• You’re done.

• No, really, you’re done!



Logging

• Be generous with logging; it’s very low-
impact on the system.

• It’s your best source of information for 
finding performance problems.



Where to log?

• syslog — If you have a syslog infrastructure 
you like already.

• standard format to files — If you are using 
tools that need standard format.

• Otherwise, CSV format to files.



What to log?

log_destination = 'csvlog'
log_directory = 'pg_log'
logging_collector = on
log_filename = 'postgres-%Y-%m-%d_%H%M%S'
log_rotation_age = 1d
log_rotation_size = 1GB
log_min_duration_statement = 250ms 
log_checkpoints = on
log_connections = on
log_disconnections = on
log_lock_waits = on
log_temp_files = 0



Memory configuration

• shared_buffers

• work_mem

• maintenance_work_mem



shared_buffers

• Below 2GB (?), set to 20% of total system 
memory.

• Below 32GB, set to 25% of total system 
memory.

• Above 32GB (lucky you!), set to 8GB.

• Done.



work_mem

• Start low: 32-64MB.

• Look for ‘temporary file’ lines in logs.

• Set to 2-3x the largest temp file you see.

• Can cause a huge speed-up if set properly!

• But be careful: It can use that amount of 
memory per planner node.



maintenance_work_mem

• 10% of system memory, up to1GB.

• Maybe even higher if you are having 
VACUUM problems.



effective_cache_size

• Set to the amount of file system cache 
available.

• If you don’t know, set it to 50% of total 
system memory.

• And you’re done with memory settings.



About checkpoints.

• A complete flush of dirty buffers to disk.

• Potentially a lot of I/O.

• Done when the first of two thresholds are 
hit:

• A particular number of WAL segments 
have been written.

• A timeout occurs.



Checkpoint settings, part 1

wal_buffers = 16MB

checkpoint_completion_target = 0.9

checkpoint_timeout = 10m-30m # Depends on restart time

checkpoint_segments = 32 # To start.



Checkpoint settings, part 2

• Look for checkpoint entries in the logs.

• Happening more often than 
checkpoint_timeout?

• Adjust checkpoint_segments so that 
checkpoints happen due to timeouts 
rather filling segments.

• And you’re done with checkpoint settings.



Checkpoint settings, part 3

• The WAL can take up to 3 x 16MB x 
checkpoint_segments on disk.

• Restarting PostgreSQL can take up to 
checkpoint_timeout (but usually less).



Planner settings.

• effective_io_concurrency — Set to the 
number of I/O channels; otherwise, ignore 
it.

• random_page_cost — 3.0 for a typical 
RAID10 array, 2.0 for a SAN, 1.1 for 
Amazon EBS.

• And you’re done with planner settings.



Easy performance boosts.

• General system stuff.

• Stupid database tricks.

• SQL pathologies.

• Indexes.

• Tuning VACUUM.



General system stuff.

• Do not run anything besides PostgreSQL 
on the host.

• If PostgreSQL is in a VM, remember all of 
the other VMs on the same host.

• Disable the Linux OOM killer.



Stupid database tricks, 1

• Sessions in the database.

• Constantly-updated accumulator records.

• Task queues in the database.

• Using the database as a filesystem.

• Frequently-locked singleton records.

• Very long-running transactions.



Stupid database tricks, 2

• Using INSERT instead of COPY for bulk-
loading data.

• psycopg2 has a very good COPY 
interface.

• Mixing transactional and data warehouse 
queries on the same database.



One schema trick

• If one model has a constantly-updated 
section and a rarely-updated section…

• (Like a user record with a name and a 
“last seen on site” field)

• … split those into two models (and thus 
two database tables).

• You’ll thank me later.



SQL pathologies

• Gigantic IN clauses (a typical Django anti-
pattern).

• Unanchored text queries like ‘%this%’; use 
the built-in full text search instead.

• Small, high-volume queries processed by 
the application.



Indexing, part 1

• What is a good index?

• A good index:

• … has high selectivity on commonly-
performed queries.

• … or, is required to enforce a constraint.



Indexing, part 2

• What’s a bad index?

• Everything else.

• Non-selective / rarely used / expensive to 
maintain.

• Only the first column of a multi-column 
index can be used separately.



Indexing, part 3

• Don’t go randomly creating indexes on a 
hunch.

• That’s my job.

• pg_stat_user_tables — Shows sequential 
scans.

• pg_stat_user_indexes — Shows index 
usage.



VACUUM

• autovacuum slowing the system down?

• Increase autovacuum_vacuum_cost_limit 
(default is 200).

• If load is periodic…

• Do manual VACUUMing instead at low-
low times.

• You must VACUUM regularly!



ANALYZE

• Collects statistics on the data to help the 
planner choose a good plan.

• Done automatically as part of autovacuum.

• Always do it manually after substantial 
database changes (loads, etc.).

• Remember to do it as part of any manual 
VACUUM process.



On-going maintenance.

• Monitoring.

• Backups.

• Disaster recovery.

• Schema migrations.



Monitoring.

• Always monitor PostgreSQL.

• At least disk space and system load.

• Memory and I/O utilization is very handy.

• 1 minute bins.

• check_postgres.pl at bucardo.org.



pg_dump

• Easiest PostgreSQL backup tool.

• Very low impact on the database being 
backed up.

• Makes a copy of the database.

• Becomes impractical as the database gets 
big (in the tens of GB).



Streaming replication, 1.

• Best solution for large databases.

• Easy to set up.

• Maintains an exact logical copy of the 
database on a different host.

• Make sure it really is a different host!

• Does not guard against application-level 
failures, however.



Streaming replication, 2.

• Replicas can be used for read-only queries.

• If you are getting query cancellations…

• Increase max_standby_streaming_delay 
to 200% of the longest query execution 
time.

• You can pg_dump a streaming replica.



Streaming replication, 3.

• Streaming replication is all-or-nothing.

• If you need partial replication, you need 
trigger-based replication (Slony, Bucardo).

• These are not part-time jobs!



WAL archiving.

• Maintains a set of base backups and WAL 
segments on a (remote) server.

• Can be used for point-in-time recovery in 
case of an application (or DBA) failure.

• Slightly more complex to set up, but well 
worth the security.

• Can be used along side streaming 
replication.



Pitfalls

• Encoding.

• Schema migrations.

• <IDLE IN TRANSACTION>

• VACUUM FREEZE



Encoding.

• Character encoding is fixed in a database 
when created.

• The defaults are probably not what you 
want.

• Use UTF-8 encoding (with appropriate 
locale).

• C Locale sometimes makes sense.



Who has done this?

• Add a column to a large table.

• Push out to production using South or 
something.

• Watch production system fall over and go 
boom as PostgreSQL appears to freeze?

• I’ve… heard about that happening.



Schema migrations.

• All modifications to a table take an 
exclusive lock on that table while the 
modification is being done.

• If you add a column with a default value, the 
table will be rewritten.

• This can be very, very bad.



Schema migration 
solutions.
• Create columns as not NOT NULL.

• Then add constraint later once field is 
populated.

• Takes a lock, but a faster lock.

• Create new table, copy values into it (old 
table can be read but not written).



<IDLE IN TRANSACTION>

• A session state when a transaction is in 
progress, but the session isn’t doing 
anything.

• Common in Django applications.

• Be careful about your transaction model.

• Don’t accept Django’s default transaction 
behavior.



VACUUM FREEZE

• Once in a long while, PostgreSQL needs to 
scan (and sometimes write) every table.

• This can be a big surprise.

• Once every few months, pick a (very) slack 
period and do a VACUUM FREEZE.



Hardware selection, one 
year ago.
• “Here are the kind of I/O subsystems to 

avoid, and to get.”

• “You need blah about this much 
memory…”

• “And you should think about cores and this 
and that and this other thing blah blah 
blah…”



The Cloud.



Hardware in the cloud.

• Get as much memory as you can.

• Get one CPU core for each two active 
connections.

• Usually, few connections are active.

• Hope the I/O subsystem can keep up with 
your traffic.

• Eventually, it won’t.



Your own hardware…

• Get lots of (ECC) RAM.

• CPU is usually not as vital as RAM.

• First step is hardware RAID, with:

• RAID10 for the main database.

• RAID1 for the transaction logs.

• RAID1 for the boot disk.



Considered harmful.

• Parity-disk RAID (RAID 5/6, Drobo, etc.).

• iSCSI, especially for transaction logs.

• SANs, unless you can afford multichannel 
fibre.

• Long network hauls between the app 
server and database server.



AWS Survival Guide.

• Biggest instance you can afford.

• EBS for the data and transaction logs.

• Don’t use instance storage for any database 
data; OK for text logs.

• random_page_cost = 1.1

• Set up streaming replication.



Additional tools.

• www.repmgr.org

• WAL-E from Heroku.

• pgFouine (log analyzer).

• pgbouncer (part of SkypeTools).

http://www.repmgr.org
http://www.repmgr.org


Additional reading.

• thebuild.com

• pgexperts.com



Questions?



Thank you!


