
Why Uber Was (Mostly) Wrong.

Christophe Pettus
PostgreSQL Experts, Inc.
PGDay Nordic 2017

You insulted my elephant.
Prepare to die.

What were the complaints?

• “Write
Amplification.”

• “Replication.”

• “Bug in 9.2”

• “Replica MVCC”

• “Upgrades.”

• “Buffers.”

• “Connections.”

Ground Rules.

• There was plenty of speculation about "real"
motives.

• We confine ourselves to what the technical
paper actually said.

• We take them at their word that they
experienced what they say they did.

INSERT
MVCC

LECTURE
HERE

Write
Amplification

The Complaint.

• PostgreSQL’s index implementation points
directly at tuples on disk.

• Any change to a tuple means all indexes
have to have a new entry added.

• One tuple write is then turned into many
page writes, to update the indexes.

MySQL is better because…

• It uses two-level indexes for non-primary-
keys.

• Key value -> primary key -> row.

• Updating a row only writes that one row.

• Indexes only need to be rewritten on
primary key changes, and those are
infrequent.

Elefact Says:
Half-True, Half-False

True:

• PostgreSQL must update every index if a
change to the row updates an index.

• PostgreSQL keeps each version of the tuple
on disk until it is vacuumed.

• Each page changed here must be pushed
down the binary replication link.

But:

• Changes to non-indexed columns do not
require an index update (HOT).

• “The Postgres autovacuum process has to
do full table scans to identify deleted rows.”

• Not for years and years.

Missing:

• MySQL’s design requires a special rollback
area.

• Concurrency is hurt by having to
reconstruct “old” database state.

• All non-PK index lookups require two
separate index operations.

• Walking a large b-tree is not free.

Replication

The Complaint:

• PostgreSQL pushes every single page
change down the binary replication link.

• This means that index changes, etc. are
included in the replication stream.

• This creates very large bandwidth demands,
especially over WAN links.

MySQL is better because…

• It only sends down logical changes.

• Index changes don’t need to be pushed
down.

• This is significantly more compact.

Elefact Says:
Apples and Oranges

True:

• Until recently, PostgreSQL did not have
logical replication in core.

• Existing logical replication tools (Slony,
Bucardo, etc.) are somewhat fiddly to set
up and manage.

• But… c’mon. Uber?

But:

• This compares MySQL logical replication to
PostgreSQL’s binary replication.

• PostgreSQL has had logical replication tools
since pretty much ever.

• PostgreSQL 9.4+ has logical replication as a
core feature.

Database
Corruption

The Complaint:

• 9.2 had a data corruption bug around
streaming replication.

• It was very unpleasant.

• "PostgreSQL had a bug, so we're switching
to MySQL."

🤷

How to put this?

• Those bugs were very promptly fixed by
the PostgreSQL project.

• I have used MySQL.

• I would not call MySQL bug free.

• Let’s just leave it at that.

“Replica MVCC”

The Complaint:

• “Postgres does not have true replica
MVCC support.”

• Incoming changes on the replication stream
can either:

• Delay replication.

• Cancel queries.

MySQL is better because…

• It only sends down logical changes.

• Those changes are transactional just like
any SQL operations.

• Queries are not blocked by incoming
changes.

Elefact Says:
Apples and Oranges

True:

• Incoming streaming replication activity can
be blocked by queries, or queries can be
cancelled.

• Naïve users can be surprised by query
cancellation messages.

But:

• This is configurable.

• You can have a “close” replica for failover
and a “delayed” replica for queries.

• Again, we’re comparing logical replication
to binary replication.

• Uber had a lot of long-running transactions
because…

“While it’s always bad form to let your
code hold open database transactions
while performing unrelated blocking I/O,
the reality is that most engineers are not
database experts and may not always
understand this problem, especially
when using an ORM that obscures low-
level details like open transactions.”

🤷

And…

• Incoming SQL-level operations will take
locks.

• Long-running transactions can block other
sessions by holding these locks.

• Is this better or worse? Why? Uber doesn't
say.

“Replica MVCC”

The Complaint:

• PostgreSQL upgrades can require a lot of
downtime.

• This is made worse if you have a large fleet
of secondaries.

• pg_dump/pg_restore-style upgrades aren’t
practical for large databases.

MySQL is better because…

• You can use logical replication to upgrade
one machine, replicate to it, and then fail
over to it.

• The switchover is very fast.

• This sounds like a great idea! PostgreSQL
should do it! Why don't we?

Elefact Says:
Half-True, Half-False.

True:

• PostgreSQL does not have in-place major
version upgrade.

• You have to do some kind of process to get
low-downtime upgrades.

• pg_upgrade, while a big improvement, is not
a panacea.

• PostGIS, for example, is a huge pain.

But:

• Once again, PostgreSQL has had logical
replication forever.

• You can do exactly the same process
on PostgreSQL as MySQL.

• I assume the company the size of Uber can
figure it out. C’mon.

Buffer Pools

The Complaint:

• PostgreSQL’s buffering system relies heavily
on the file system cache.

• Pulling things from file system cache, while
faster than from disk, requires a context
switch to the OS.

• This is bad.

MySQL is better because…

• It relies more on its own local cache.

• This means it can retrieve more data
without context switches.

• This is just the best thing ever.

Elefact Says:
Mostly True.

True:

• PostgreSQL’s shared buffer management
performance peaks at 8-32GB.

• [citation required]

• Larger shared_buffers than that (usually)
mean diminishing returns.

• Retrieving things from file system cache is
slower than from shared buffers.

But:

• It’s not clear what the real-life performance
impact of this is.

• (Uber didn’t provide any in their paper.)

• General OLTP systems are not super-
sensitive to shared_buffers.

• While it undoubtedly improves
performance, it’s just one of many things.

Connection
Management

The Complaint:

• PostgreSQL forks a new process for each
connection.

• This results in high latency and RAM usage
for each new connection.

• It’s hard to scale PostgreSQL above a few
hundred connections.

MySQL is better because…

• It uses threads instead of processes.

• Each new connection is much lighter-
weight.

• This allows it to scale to many more
connections.

Elefact Says:
Mostly True.

True:

• The PostgreSQL forking model is not
efficient for lots of connections, or fast
connection cycling.

• While basic RAM statistics can be
misleading, each backend does consume a
notable amount of memory.

But:

• This conflates connection establishment
with connection activity.

• The number of “hot” connections
PostgreSQL and MySQL can handle are
generally equivalent.

• The putative performance problem of
PostgreSQL's context switching is, at best,
speculative and not demonstrated.

And:

• pgbouncer exists to mitigate this exact
problem.

• Admittedly, pgbouncer is not always a drop-
in replacement.

• Uber even tried to use pgbouncer…

“However, we have had occasional
application bugs in our backend services
that caused them to open more active
connections (usually ‘idle in transaction’
connections) than the services ought to
be using, and these bugs have caused
extended downtimes for us.”

🤷

So, the dolphin wins this one.

True:

• Uber identified some real pain points with
PostgreSQL.

• Some of the points are valid, and are the
subject of active work by the project.

• Unquestionably, they were experiencing
some headaches.

But:

• The consistent comparison of logical vs
binary replication is maddening.

• Slony or Bucardo are fiddly, but…

• … it beggars belief that an organization like
Uber can’t make them go.

• And we've had pg_logical for a while now.

A few last notes…

• There was remarkably little quantitative
information in how PostgreSQL vs MySQL
performed in their environment.

• They had already made a decision to move
to a schema-less architecture.

• “MySQL handles our devs’ bugs better.”

🤷

thebuild.com
pgexperts.com

Questions?

Christophe Pettus
@xof  

thebuild.com
pgexperts.com

Thank you!

Christophe Pettus
@xof  

