
ORMs and Their
Discotheques
Discontents

Christophe Pettus
PGXPUG Day OSCON 2010

July 18, 2010

Has this ever happened
to you?

• “This query is running way too slowly.
God, RDBMSes suck!”

• “Well, you just need to change the WHERE
clause…”

• “I can’t change the SQL. We’re using an…”

ORM

ORMs and Their
Discontents

• Why ORMs at all?

• What are the problems?

• What can we do to keep from killing app
developers?

• Hibernate (Java)

• ActiveRecord (Ruby, doh)

• Django ORM, SQLAlchemy (Python)

• Propel (PHP)

• Core Data (Objective-C)

• Taligent Object Storage Framework (C++,
three years of my life down the drain)

Object-Relational
Mapper

What is OO
programming?

• Not inheritance.

• Not “messaging.”

• Not typing.

Encapsulation.

• Object-Oriented Programming is
fundamentally about encapsulation.

• The basic building block is an object that
exposes operations.

• The object defines behavior, and you bring
the data.

The Relational Model

• The basic unit is a tuple, organized into
tables.

• The data of the tuple is fully exposed.

• The model relies on the ability to “pull
apart” tuples.

• The database holds data, and you bring the
behavior.

Pity the Poor ORM

• An Object-Relational Mapper has to bridge
these worlds.

• OO class maps to a DB table.

• OO data member maps to DB column.

• And everything else is kind of random.

Object Structures are
Graphs.

• OO is all about in-memory objects with
references (pointers, what have you) to
other objects.

• The set of references is relatively static to a
particular class.

The Relational Model
Isn’t.

• Tables come and go all the time.

• The “tables” as such are really just a
privileged set of relations that have really
long lifetimes.

• Foreign keys are more about data integrity,
less about permanent relationships.

The Application
Programmer’s Lament.

I Just Want This Object
to Be Stored On Disk.

Is that too much to ask?

All ORMs Started That
Way.

• The application was written in an OO
language.

• They had an RDBMS.

• They needed to store objects.

• Hammer implies nail.

App Programmers
Aren’t Stupid.

• Well, no more than most people.

• But they are lazy.

• But then again, who isn’t?

Let’s Face It, Writing Code
Like This Sucks.

cursor* curs;
curs = db_connection->create_cursor();

customer_order *order = new(customer_order);

if (curs.execute(“SELECT * from customer_order WHERE order_id=123”)) {
 result_set* results;
 results = curs->fetch_results();

 customer_order->order_id = results->fetch_column(“order_id”);
 customer_order->customer_id = results->fetch_column(“customer_id”);
 customer_order->date_placed = results->fetch_column(“date_placed”);
 // ??? Need to finish. First programmer quit to become
 // ??? a tour guide in Slovakia.
}

Who Wouldn’t Rather
Write This?

customer_order* order = customer_order.retrieve(123);
order->cancel();
 // Didn’t want that loser’s business anyway.
order->save();
 // Off for a latte!

Non-Tech Reasons.

• ORMs promise database independence.

• Mephistopheles gave Faust a great spec
sheet, too.

• App programmers hate SQL. They really,
really, really hate SQL.

• SQL is taught as a command language,
not a discipline.

http://en.wikipedia.org/wiki/Mephistopheles
http://en.wikipedia.org/wiki/Mephistopheles

What could possibly go
wrong?

• “Great! Oh, we need to increment the
order_age field each night at midnight.”

• “Could we get a report of all open orders
where the customer has prepaid more than
50% of the total?”

• “Why is the database running so slowly?
God, RDBMSes suck! Let’s use CouchDB.”

The More Rows, the
Bigger the Problem.

• ORMs generally break down on highly relational or
large multi-row operations.

• The naïve approach is almost always wrong.

• ORMs encourage pathological iteration.

• Various ORMs have grown various tools to deal with
this…

• But at that point, they’re just weird-syntax SQL.

Transaction (Mis-)
Management

• ORMs generally have bizarre transaction
models.

• “Each operation its own transaction”
seems to be a typical default.

• Transaction management tools are often
made to seem like a black art.

address = Address(street_address="1112 E Broad St",
city="Westfield", state="NJ", zip="07090")

address.save()

order = Order(customer_name="Gomez Addams",
shipping_address=address)

order.save()

BEGIN;

INSERT INTO Address VALUES (...);

COMMIT;

BEGIN;

INSERT INTO Order VALUES (...);

COMMIT;

The Full Flexibility of
SQL… Except That.

• ORMs frequently impose restrictions on
the database schema.

• Example: Django ORM doesn’t allow
composite primary keys on rows.

• Triggers? Constraints? Stored Procedures?

I’m Helping!

• Database-agnosticism frequently means the
ORM tries too hard.

• Example: Django’s ORM does cascaded
deletion across foreign keys…

• … even if the underlying DBMS supports it.

Bypass Surgery.

• Just about every ORM allows direct access
to the SQL layer.

• Of course, ORMs are also doing in-
memory caching, and you’re on your own
for cache invalidation.

• “The great thing about this model of car?
You can still walk!”

The Slice Non-
Problem.

• The “SELECT *” problem is not a core
problem.

• But all ORMs try to fix it anyway.

• Breaks encapsulation.

• Probably reveals a bad schema design.

So, Why Should We
Care?

• DB administrators and architects are
routinely called in to fix ORM-related
problems.

• Problem with ORMs (or their use) are
attributed to SQL, not the ORM.

• ORM-think is one of the driving forces
behind “NoSQL” databases.

What To Do?

• ORMs are not going away — nor should
they.

• “Better ORMs” are not the answer.

• ORMs have been around since the early
1990s.

• If we could fix it that way, we would have
by now.

It’s an Education
Problem.

• SQL is treated as a command language on a
par with bash.

• Web developers tend to be focused on the
front end OLTP.

• App programmers view their data as an
object graph.

• ORMs are baked into popular frameworks.

Management Issues.

• Web programmers are relatively cheap.

• SQL experts are relatively expensive.

• The problems can be blamed on the
RDBMS.

• Database portability is considered good
by definition.

• Profit!

Quick Fixes.
• Write custom SQL and stuff it inside of object

APIs.

• Create friendly APIs for the application using
stored procedures.

• Database server as app server.

• Plays to a serious PG strength.

• Move mass-update operations out of the OO
codebase into separate processes.

Management Fixes.

• Performance issues cost money.

• An underused RDBMS makes inefficient
use of the hardware.

• No real-world application is pure OLTP.

• ORMs are not a data warehousing solution.

Educational Fixes.

• tail -f the logs.

• ORMs sweep a lot under the rug; take
out the rug-beater.

• Teach the relational model, not “SELECT
gets the data.”

• SQL experts are expensive, remember?

• Profit!

Management Fixes.

• Misused RDBMSes cost money.

• Extra hardware.

• Extra developer time.

• Remember those expensive SQL
experts?

• Get what you are paying for!

ORMs are not evil.
• They’re invaluable for their core operation of

object persistence.

• We’d have to pry them out of their cold, dead
hands anyway.

• Most of the problems come from the “hammer/
nail” attitude.

• App programmers have been convinced that not
learning SQL is a virtue.

So, how do you solve
the problem?

