ORMs and Their
Discotheqgues

Discontents

Christophe Pettus
PGXPUG Day OSCON 2010
July 18,2010



Has this ever happened
to you!

® “This query is running way too slowly.
God, RDBMSes suck!”

® “Well, you just need to change the WHERE
clause...”

® “| can’t change the SQL.We’re using an...”






ORMs and Their
Discontents

® Why ORMs at all?
® What are the problems!?

® VWhat can we do to keep from killing app
developers?



Object-Relational
Mapper

Hibernate (Java)

ActiveRecord (Ruby, doh)

Django ORM, SQLAIchemy (Python)
Propel (PHP)

Core Data (Objective-C)

Taligent Object Storage Framework (C++,
three years of my life down the drain)



What is OO
programming!?

® Not inheritance.
® Not “messaging.”’

® Not typing.



Encapsulation.

® Object-Oriented Programming is
fundamentally about encapsulation.

® The basic building block is an object that
exposes operations.

® The object defines behavior, and you bring
the data.



The Relational Model

® The basic unit is a tuple, organized into
tables.

® The data of the tuple is fully exposed.

® The model relies on the ability to “pull
apart’ tuples.

® The database holds data, and you bring the
behavior.



Pity the Poor ORM

An Object-Relational Mapper has to bridge
these worlds.

OO class maps to a DB table.
OO data member maps to DB column.

And everything else is kind of random.



Object Structures are
Graphs.

® OO is all about in-memory objects with
references (pointers, what have you) to
other objects.

® The set of references is relatively static to a
particular class.



The Relational Model
Isn’t.

® Tables come and go all the time.

® The “tables” as such are really just a

privileged set of relations that have really
long lifetimes.

® Foreign keys are more about data integrity,
less about permanent relationships.



The Application
Programmer’s Lament.



| Just Want This Object
to Be Stored On Disk.

Is that too much to ask!



All ORMs Started That
VVay.

® The application was written in an OO
language.

® They had an RDBMS.
® [hey needed to store objects.

® Hammer implies nail.



App Programmers
Aren’t Stupid.

® Well, ho more than most people.
® But they are lazy.

® But then again, who isn’t?



Let’s Face It, Writing Code
Like This Sucks.

cursor* curs;
curs = db_connection->create_cursor();

customer_order *order = new(customer_order);

1f (curs.execute(“SELECT * from customer_order WHERE order_id=123")) {
result _set* results;
results = curs->fetch _results();

customer_order->order_1id = results->fetch_column(“order_1id"”);
customer_order->customer_id = results->fetch_column(“customer_id");
customer_order->date_placed = results->fetch_column(“date_placed”);
// ??? Need to finish. First programmer quit to become

// ??7 a tour guide in Slovakia.



Who Wouldn’t Rather
Write This?

customer_order* order = customer_order.retrieve(123);
order->cancel();

// Didn’'t want that loser’s business anyway.
order->save();

// Off for a latte!



Non-lech Reasons.

® ORMs promise database independence.

® Mephistopheles gave Faust a great spec
sheet, too.

® App programmers hate SQL. They really,
really, really hate SQL.

® SQL is taught as a command language,
not a discipline.


http://en.wikipedia.org/wiki/Mephistopheles
http://en.wikipedia.org/wiki/Mephistopheles

WWhat could possibly go
wrong!?
® “Great! Oh, we need to increment the

order_age field each night at midnight.”

® “Could we get a report of all open orders

where the customer has prepaid more than
50% of the total?”

® “Why is the database running so slowly!?
God, RDBMSes suck! Let’s use CouchDB.”



The More Rows, the
Bigger the Problem.

® ORMs generally break down on highly relational or
large multi-row operations.

® The naive approach is almost always wrong.
® ORMs encourage pathological iteration.

® Various ORMs have grown various tools to deal with
this...

® But at that point, they're just weird-syntax SQL.



Transaction (Mis-)
Management

ORMs generally have bizarre transaction
models.

“Each operation its own transaction”
seems to be a typical default.

Transaction management tools are often
made to seem like a black art.



address = Address(street_address="1112 E Broad St",
city="Westfield", state="NJ", z1ip="07090")

address.save()

order = Order(customer_name="Gomez Addams",
shipping_address=address)

order.save()



BEGIN;

INSERT INTO Address VALUES (...);
COMMIT,

BEGIN;

INSERT INTO Order VALUES (...);

COMMIT,



The Full Flexibility of
SQL... Except T hat.

® ORMs frequently impose restrictions on
the database schema.

® Example: Django ORM doesn’t allow
composite primary keys on rows.

® Triggers! Constraints! Stored Procedures?



I’'m Helping!

® Database-agnosticism frequently means the
ORM tries too hard.

® Example: Django’s ORM does cascaded
deletion across foreign keys...

® ... even if the underlying DBMS supports it.



Bypass Surgery.

® Just about every ORM allows direct access
to the SQL layer.

® Of course, ORMs are also doing in-
memory caching, and you're on your own
for cache invalidation.

® “The great thing about this model of car!?
You can still walk!”




The Slice Non-
Problem.

® The “SELECT *” problem is not a core
problem.

® But all ORMs try to fix it anyway.
® Breaks encapsulation.

® Probably reveals a bad schema design.



50, Why Should We
Care!

® DB administrators and architects are
routinely called in to fix ORM-related
problems.

® Problem with ORMs (or their use) are
attributed to SQL, not the ORM.

® ORM-think is one of the driving forces
behind “NoSQL’ databases.



What To Do!?

® ORMs are not going away — nor should
they.

® ‘“‘Better ORMSs” are not the answer.

® ORMs have been around since the early
1990s.

® |f we could fix it that way, we would have
by now.



It’s an Education
Problem.

SQL is treated as a command language on a
par with bash.

Web developers tend to be focused on the
front end OLTP.

App programmers view their data as an
object graph.

ORMs are baked into popular frameworks.



Management Issues.

® Web programmers are relatively cheap.
® SQL experts are relatively expensive.

® [he problems can be blamed on the
RDBMS.

® Database portability is considered good
by definition.

® Profit!



Quick Fixes.

® Write custom SQL and stuff it inside of object
APIs.

® Create friendly APIs for the application using
stored procedures.

® Database server as app server.
® Plays to a serious PG strength.

® Move mass-update operations out of the OO
codebase into separate processes.



Management Fixes.

Performance issues cost money.

An underused RDBMS makes inefficient
use of the hardware.

No real-world application is pure OLTP.

ORMs are not a data warehousing solution.



Educational Fixes.

® tail -T thelogs.

® ORMs sweep a lot under the rug; take
out the rug-beater.

® Jeach the relational model, not “SELECT
gets the data.”

® SQL experts are expensive, remember?

® Profit!



Management Fixes.

® Misused RDBMSes cost money.
® Extra hardware.
® Extra developer time.

® Remember those expensive SQL
experts?

® Get what you are paying for!



ORMs are not evil.

® They're invaluable for their core operation of
object persistence.

® We'd have to pry them out of their cold, dead
hands anyway.

® Most of the problems come from the “hammer/
nail” attitude.

® App programmers have been convinced that not
learning SQL is a virtue.



S0, how do you solve
the problem!?



