
thebuild.com
pgexperts.com

PostgreSQL,
Python,
and Squid.

Christophe Pettus
PostgreSQL Experts, Inc.

Let’s Talk Squid.

• What is a squid, anyway?

• For our purposes, a squid has three
attributes:

• length — in centimeters.

• number of tentacles.

• weight — in kilograms.

And of course!

• We’re using PostgreSQL.

• We’re using Python.

• We’re using psycopg2.

So, we do something like this.

class Squid(object):
 def __init__(self, length, tentacles, weight):
 self.length = length
 self.tentacles = tentacles
 self.weight = weight

 def __str__(self):
 return '(' + str(self.length) + ',' +
 str(self.tentacles) + ',' +
 str(self.weight) + ')'

s = Squid(length=12.5, tentacles=4, weight=5.7)

And we do something like this.

CREATE TABLE squid (
 squid_key bigserial primary key,
 length float,
 tentacles integer,
 weight float,
 CHECK (tentacles BETWEEN 3 AND 32)
);

And we write something like this.

cur.execute(“””
 INSERT INTO squid VALUES(%s, %s, %s)
“””, [s.length, s.tentacles, s.weight])
cur.commit()

And something like this.

cur.execute(“””
 SELECT length, tentacles, weight FROM squid
 WHERE squid_key=%s
“””, [skey])

squid_row = cur.fetchone()

squid = Squid(length=squid_row[0],
 tentacles=squid_row[1],
 weight=squid_row[2])

And we’re done.

• Well, that was a short presentation.

• But now, we want two different tables with
Squid in them.

• That’s OK, we just replicate the schema…

Like this…

CREATE TABLE atlantic_squid (
 squid_key bigserial primary key,
 length float,
 tentacles integer,
 weight float,
 CHECK (tentacles BETWEEN 3 AND 32)
);

CREATE TABLE pacific_squid
 (LIKE atlantic_squid INCLUDING ALL);

And then we write something like…

cur.execute(
 “INSERT INTO “ + ocean + “_squid VALUES(%s, %s, %s)”,
 [s.length, s.tentacles, s.weight])
cur.commit()

And at this point, we think…

• Wait, PostgreSQL has types!

• Maybe we can use PostgreSQL’s custom
type facility.

But then you think…

• Oh, only big packages like PostGIS do stuff
like that.

• We have to write C and PL/pgSQL and
probably Scheme and Erlang for all we
know.

• And how about operators? And indexing?

• Not for the likes of us Python people.

You would be wrong!

• It’s easy to create custom types in
PostgreSQL.

• You can use custom PostgreSQL types in
your application without much nasty code.

• You can write functions in the PostgreSQL
database in Python.

PostgreSQL Custom Types.

• PostgreSQL has an extensive type system.

• You can create your own types.

• High-level aggregate types (structures of
existing types).

• Low-level C-language types.

• Not today.

Declaring an aggregate type.

• Any time you declare a table, you also get a
type with the same name and same
structure.

• You can also just create a type without
creating a new table.

Like this!

CREATE TYPE squid AS (
 length float,
 tentacles integer,
 weight float
);

That’s great, but…

• How do we get that custom type into and
out of Python?

• psycopg2 has facilities for going both
directions.

• Once set up, it Just Works.

Squids into the Database!

class Squid(object):

#...

 def __conform__(self, protocol):
 if protocol is psycopg2.extensions.ISQLQuote:
 return self

 def getquoted(self):
 return "'" + str(self) + "'::squid"

ISQLQuote Protocol

• Implement __conform__ and getquoted.

• __conform__ returns the object that
implements getquoted.

• You can just return self.

• getquoted returns the object converted
into “SQL quoted format.”

What’s “SQL Quoted Format”?

• Generally, it’s just a string.

• Any internal quotes need to follow the
SQL quoting conventions.

• Custom types are serialized into strings.

• Aggregate types are enclosed in parens,
with fields separated by commas.

For squids, it’s easy.

• We just use the string representation, since
there are no fields that might contain
quotes.

• If there were, you could just call the
appropriate getquoted method on them.

• We wrap the whole thing in SQL string
quotes, and add a ‘::squid’ cast to it.

Other People’s Children Classes

• What if we didn’t write the class?

• psycopg2.extensions.register_adapter(class,
adapter)

• The adapter function takes the object,
returns a object that implements
getquoted.

• If the str() of the object is fine, you can use
AsIs to just return that.

We can create a table like this…

CREATE TABLE squids (
 squid_key bigserial primary key,
 a_squid squid
);

… and insert into it like this!

s = Squid(length=12.5, tentacles=4, weight=5.7
cur.execute("INSERT INTO squids(a_squid) VALUES(%s)",
 [s,])

But how do we get the squids out?

• Need to write a cast function.

• Takes the string representation from the
database, and returns the object.

• We then register that function with
psycopg2.

Now you have two problems.

def cast_squid(value, cur):
 if value is None:
 return None

 match_object = re.match(r'\((?P<length>[0-9.]+),(?P<tentacles>[0-9]+),
(?P<weight>[0-9.]+)\)', value)

 if match_object is None:
 return None

 length = float(match_object.group('length'))
 tentacles = int(match_object.group('tentacles'))
 weight = float(match_object.group('weight'))

 return Squid(length=length, tentacles=tentacles, weight=weight)

And then we register it.

SQUID = psycopg2.extensions.new_type((72007,),
 "squid", cast_squid)
psycopg2.extensions.register_type(SQUID)

Not so fast. 72007?

• That’s the OID for the Squid type in this
particular PostgreSQL database.

• All database schema objects have an OID.

• It’s different for every database that we
create that type in.

• Changes if you restore the database from a
pg_dump.

How do we get it?

cur.execute("SELECT NULL::Squid")
squid_oid = cur.description[0][1]
 # Can be executed once and cached.

And now SELECT works.

>>> cur.execute("SELECT a_squid FROM squids")
>>> s = cur.fetchone()[0]
>>> print s.__class__
<class '__main__.Squid'>

OK, but…

• What happened to our CHECK constraint?

• We don’t want mutant squids getting into
our database.

• We could write a trigger…

• … but we don’t want to write PL/pgSQL.

We don’t have to!

• PL/Python!

• We can write our triggers and other
functions in Python.

• The functions run in the PostgreSQL
backend just like any other server-side
code.

Great! Sign me up!

• PL/Python isn’t part of a database by
default.

•CREATE LANGUAGE plpythonu;

• The “U” means Untrusted.

• Can bypass PostgreSQL’s access control
system.

• Only superusers can create functions.

It didn’t like that.

• If you are using a package, make sure you
have installed the appropriate -contrib
package.

• If you are building from source, make sure
you build with the --with-python option.

Python 2? Python 3?

• PostgreSQL supports both.

• “plpython2u” “plpython3u”

• “plpythonu” gets you Python 2 right now,
but might get you Python 3 in the future.

• The far, far future.

Same syntax as any function.

CREATE OR REPLACE FUNCTION hello_world() RETURNS bool AS
$hello_world$

plpy.notice(“Hello, squids of the world!”)
return True

$hello_world$
 LANGUAGE plpythonu;

And called the same.

squidy=# select hello_world();
NOTICE: Hello, squids of the world!
CONTEXT: PL/Python function "hello_world"
 hello_world

 t
(1 row)

Notes.

• Don’t declare a function body; PL/Python
wraps it for you.

• Can call any installed Python package, but:

• Cannot directly call any other stored
procedure, in any language.

• Use the SPI for that.

• Module plpy contains that stuff.

One tentacle at a time, please.

• The PostgreSQL backend is single-
threaded.

• Do not spawn threads within your PL/
Python function.

• If you break it, you get to keep all the
pieces.

So, let’s create our trigger!

CREATE OR REPLACE FUNCTION squid_trigger() RETURNS trigger AS
$squid_trigger$

 from plpy import spiexceptions

 calamari = TD["new"]["a_squid"][1:-1].split(',')

 tentacles = int(calamari[1])

 if tentacles > 32 or tentacles < 3:
 raise spiexceptions.CheckViolation

 return "OK"
$squid_trigger$
 language plpythonu;

Calamari appetizer.

• In the TD structure, composite types are
their string representation.

• In parameters to non-trigger stored
procedures, they are passed (more
logically) as hashes.

Now, we attach the trigger!

CREATE CONSTRAINT TRIGGER squid_trigger
 AFTER INSERT OR UPDATE OF a_squid ON squids
 NOT DEFERRABLE
 FOR EACH ROW EXECUTE PROCEDURE squid_trigger();

Eldritch Monstrosities Avoided.

squidy=# INSERT INTO squids(a_squid)
VALUES((100, 47, 4.5)::squid);
ERROR: spiexceptions.CheckViolation:
CONTEXT: Traceback (most recent call last):
 PL/Python function "squid_trigger", line
10, in <module>
 raise spiexceptions.CheckViolation
PL/Python function "squid_trigger"

The Null Squid Hypothesis.

• Row types have strange rules around
NULL.

• (1.0, NULL, 1.0)::squid IS NULL;

• True.

• (1.0, NULL, 1.0)::squid IS NOT NULL;

• Also true!

• NULL is a never-ending source of delight.

The Elusive Squid.

 Seq Scan on squids (cost=0.00..253093.09
rows=50000 width=53) (actual
time=6.917..2590.863 rows=1012 loops=1)
 Filter: (((a_squid).length >= 100::double
precision) AND ((a_squid).length <=
101::double precision))
 Rows Removed by Filter: 9998989
 Total runtime: 2591.113 ms

Squid total ordering.

• Squids are ordered by length, and nothing
else.

• That’s just how squids roll.

• Can we speed up searching?

• Yes! We can create B-Tree indexes on
custom types.

Defining ordering.

CREATE OR REPLACE FUNCTION squid_comp (left squid, right
squid)
 RETURNS int as
$squid_comp$

 if left["length"] < right["length"]:
 return -1
 elif left["length"] > right["length"]:
 return 1
 else:
 return 0

$squid_comp$
 LANGUAGE plpythonu
 IMMUTABLE STRICT;

Defining Operators

CREATE OR REPLACE FUNCTION squid_eq (left squid, right squid)
RETURNS bool AS

$squid_eq$

 return left["length"] == right["length"]

$squid_eq$
 LANGUAGE plpythonu
 IMMUTABLE STRICT;

Defining Operators

CREATE OPERATOR = (
 LEFTARG = squid,
 RIGHTARG = squid,
 PROCEDURE = squid_eq,
 COMMUTATOR = =,
 NEGATOR = <>,
 RESTRICT = eqsel,
 JOIN = eqjoinsel,
 HASHES, MERGES
);

Defining Operators

CREATE OPERATOR <= (
 LEFTARG = squid,
 RIGHTARG = squid,
 PROCEDURE = squid_le,
 COMMUTATOR = >=,
 NEGATOR = >,
 RESTRICT = scalarltsel,
 JOIN = scalarltjoinsel
);

Finally, an operator class…

CREATE OPERATOR CLASS squid_ops
 DEFAULT FOR TYPE squid USING btree AS
 OPERATOR 1 < ,
 OPERATOR 2 <= ,
 OPERATOR 3 = ,
 OPERATOR 4 >= ,
 OPERATOR 5 > ,
 FUNCTION 1 squid_comp(squid, squid);

And then, Squidex!

CREATE INDEX squidex ON squids(a_squid);

Jet Propulsion!

Bitmap Heap Scan on squids (cost=2176.56..113217.70
rows=50000 width=53) (actual time=10.991..12.367 rows=1012
loops=1)
 Recheck Cond: ((a_squid >= ROW(100::double precision, 4,
100::double precision)::squid) AND (a_squid <= ROW(101::double
precision, 4, 100::double precision)::squid))
 -> Bitmap Index Scan on squidex (cost=0.00..2164.06
rows=50000 width=0) (actual time=10.866..10.866 rows=1012
loops=1)
 Index Cond: ((a_squid >= ROW(100::double precision,
4, 100::double precision)::squid) AND (a_squid <=
ROW(101::double precision, 4, 100::double precision)::squid))
 Total runtime: 12.463 ms

Thanks for all the seafood.

• We can implement a custom type in
PostgreSQL that integrates nicely with a
Python class.

• … without losing any database features.

• … and those types can even have custom
operators and comparisons.

• … and their own indexes!

I’m allergic to shellfish.

• This works with lots of stuff.

• Range types, citext…

• Any time you have an advanced attribute
type that you want to adapt to Python.

• Whether or not you defined the type.

• Not just for squid anymore!

Questions?

Thank you!

@xof
cpettus@pgexperts.com

mailto:cpettus@pgexperts.com
mailto:cpettus@pgexperts.com

