
Unclogging the

VACUUM

Christophe Pettus
PostgreSQL Experts, Inc.
PGConf EU Tallinn, November 2016

Greetings!

• Christophe Pettus

• CEO, PostgreSQL Experts, Inc.

• thebuild.com — personal blog.

• pgexperts.com — company website.

• Twitter @Xof

• christophe.pettus@pgexperts.com

mailto:christophe.pettus@pgexperts.com
mailto:christophe.pettus@pgexperts.com

VACUUM.

• Everyone’s least-favorite PostgreSQL
feature.

• Yet, essential to proper database operation.

• But why do we need it at all?

• Let’s take a moment to find out.

The Problem.

• Process 1 begins a transaction.

• Process 2 begins a transaction.

• Process 1 updates a tuple.

• Process 2 tries to read that tuple.

• What happens?

Bad Things.

• Process 2 can’t get the new version of the
tuple (ACID [generally] prohibits dirty
reads).

• But where does it get the old version of
the tuple from?

• Memory? Disk? Special old-tuple area?

• What if we touch 250,000,000 rows?

Some Approaches.

• Lock the whole database.

• Lock the whole table.

• Lock that particular tuple.

• Reconstruct the old state from a special
area.

• None of these are particularly satisfactory.

Multi-Version Concurrency Control.

• Create multiple “versions” of the database.

• Each transaction sees its own “version.”

• We call these “snapshots” in PostgreSQL.

• There is no privileged “real” snapshot.

Multiple Tuple Versions.

• Each version of the tuple is a real, first-class
member of the database.

• And it takes up disk space.

• Even after no transaction can still “see” it,
because of an UPDATE or DELETE.

• A tuple that is no longer visible to any
transaction is a “dead” tuple.

Nothing’s Perfect.

• Dead tuples are not immediately returned
to free space

• Doing so would make COMMIT far too
expensive.

• But these dead tuples build up over time.

• Which means: VACUUM!

VACUUM.

• VACUUM’s primary job is to scavenge dead
tuples.

• The space is reclaimed for new tuples, but
is not released back to the operating
system.

• Except under relatively unusual
situations.

VACUUM also…

• … can do an ANALYZE, which rebuilds the
statistics that the planner uses to plan
queries.

• Prevents the dreaded “xid wraparound.”

• Posts updates to GIN indexes.

• More on those later.

VACUUM details.

• Standard VACUUM is incremental. It only
works on pages that require vacuuming.

• VACUUM FREEZE (<9.6) does a full table
scan.

• autovacuum will stop on a table if some
other process takes a lock that would
prevent it from continuing.

Common Complaint #1

• “We deleted 50% of the rows of this very
large table, but the disk space usage didn’t
go down.”

• It almost never will, even after a standard
VACUUM is complete.

• The space is, however, now available for
reuse by new INSERTs and UPDATEs.

Bloat.

• All PostgreSQL databases have a certain
amount of “bloat.”

• Bloat is disk usage over what a perfectly-
packed database would have.

• My rule of thumb: ~50% bloat (2 x
perfectly-packed) is normal.

Warning Signs.

• Disk space increasing much faster than the
INSERT volume would indicate.

• But don’t forget to include indexes, which
can be larger than the data!

• Bloat percentage increasing, as opposed to
absolute bloat in bytes.

autovacuum

• In 95% of all PostgreSQL installs, you never
have to worry about VACUUM.

• Since version 8.0, autovacuum runs in the
background, and manages it for you.

• The default configuration is suitable for
most installations.

• Easy!

Complaints.

• Excessive bloat / space not being reclaimed.

• autovacuum using too much I/O.

• autovacuum getting “stuck”.

• VACUUM FREEZE-related issues.

Excessive Bloat.

• What’s “excessive”?

• Depends on UPDATE / DELETE rate.

• Higher will mean more “normal” bloat.

• Warning sign is database footprint
increasing much faster than new tuples
coming in.

Is autovacuum running?

• Is it turned on? (It is by default, but some
enthusiastic people turn it off and forget.)

• autovacuum = on

• Check pg_stat_user_tables to see last
autovacuum run on the table… far in the
past, or never?

• log_autovacuum_min_duration = 1000

Increase frequency.

• Increase the number of workers.

• Often require for very large schemas
(1,000+ tables).

• Up to 5, 10, even 20 for huge schemas.

• Reduce autovacuum_naptime to let
autovacuum run more often.

Per-table settings.

• tuples changed > autovacuum_ vacuum_threshold
+ (autovacuum_vacuum_scale_factor * table size in
tuples)

• For large tables, this can result in a too-long delay.

• Can adjust per-table or system-wide.

Explicit locking.

• autovacuum “backs off” if a strong table-
level lock is taken on a table.

• Schema changes, explicit LOCK statements.

• High frequency LOCKing + lots of
UPDATEs / DELETEs = horrible bloat
(common in queuing systems).

Statistics collector running?

• If the statistics collector fails, autovacuum
doesn’t have the data needed to run.

• 21942 ?? Ss 0:00.00 postgres: stats collector process

• If the statistics collector fails, autovacuum
doesn’t have the data needed to run.

Index Bloat.

• Index bloat is often more severe than data
bloat.

• Index structure means it is harder to
reclaim space effectively.

• In general, this is not a serious issue, but…

Rebuilding Indexes.

• Indexes can be periodically rebuilt if they
are badly bloated.

• CREATE INDEX CONCURRENTLY

• DROP INDEX

• Less downtime than a REINDEX.

Detecting Bloat.

• All bloat detection methods are somewhat
uncertain.

• https://github.com/pgexperts/pgx_scripts/
tree/master/bloat

• Can be included in monitoring scripts.

• Graph them, don’t just set up alerts.

https://github.com/pgexperts/pgx_scripts/tree/master/bloat
https://github.com/pgexperts/pgx_scripts/tree/master/bloat
https://github.com/pgexperts/pgx_scripts/tree/master/bloat
https://github.com/pgexperts/pgx_scripts/tree/master/bloat

The Bloat Hammer

• Sometimes, you need to un-bloat a table.

• VACUUM FULL works great, but…

• … it takes an exclusive lock on the table
for the entire time it runs.

• Often not practical for a busy system.

• (Any table-rewriting DDL will also de-bloat
the table.)

pg_repack

• http://reorg.github.io/pg_repack/

• Extension to repack tables without a long
exclusive lock.

• Uses triggers to create a secondary table
during the repack operation.

• Some gotchas and restrictions: read the
documentation!

https://github.com/reorg/pg_repack
https://github.com/reorg/pg_repack

App-level fixes.

• Use TRUNCATE rather than DELETE if
practical.

• Instead of doing mass deletes, consider a
partitioned table where you just DROP the
older tables.

• DROP TABLE just throws the files away…
no VACUUM!

Things To Avoid.

• Very long-running transactions (or idle-in-
transaction sessions).

• Very frequent updates on indexed columns
(defeats HOT optimization).

• Gratuitous updates (no row changes, or
one-update-per-column-change).

Explicit VACUUM.

• Do an explicit VACUUM ANALYZE after
large UPDATE / DELETE changes to a
particular table.

• Moves to work to being part of the bulk
job, rather than some random point later.

Common Complaint #2

• “autovacuum is stuck.”

• It usually isn’t.

• No, really, it usually isn’t.

• But how can you tell?

Long autovacuums.

• Is the process doing I/O?

• How big is the table being vacuumed?

• How long since the last vacuum?

• Recent major bulk update/delete
operations?

• Is it using an unusual amount of CPU?

maintenance_work_mem

• Sets maximum memory autovacuum will
use for various operations.

• 1-2GB is usually about right, more if you
have huge indexes.

• Be aware if you have also increased the
number of workers!

(to prevent xid wraparound)

• Does this appear in pg_stat_activity in the
“query” column for the autovacuum
process?

• This means it is doing a VACUUM FREEZE.

• These tend to be long-running and high I/O.

• More in a bit.

Killing autovacuum processes.

• As a last resort, use pg_terminate_backend
to terminate an autovacuum process.

• Don’t use kill -9!

• If it is a “(to prevent xid wraparound)”
autovacuum, it will probably just start up
again.

• If that doesn’t work, restart PostgreSQL.

Extra for Experts

• Attach strace to the autovacuum process.

• Doing I/O? Stuck on a semaphore?

• In (very) unusual situations, autovacuum
can be stuck on a spinlock on a buffer page.

• Killing the process at the OS level is usually
the only choice then.

Common Complaint #3

• “autovacuum is using too much I/O.”

• VACUUM is high I/O.

• “(to prevent xid wraparound)” even
more so.

• Lots and lots and lots of cost-based
configuration parameters to play with.

autovacuum_vacuum_cost_delay

• First place to look.

• Increase this to make autovacuum less
“aggressive” while working on a specific
table.

• Start at 50-100ms, increase until the I/O
load comes back under control.

But.

• This will slow down the speed of
autovacuum.

• If you have both autovacuum-too-slow and
autovacuum-too-much-I/O problems…

• … it may be time to look at a more-
hardware or app-level solution to the
problem.

Analyze.

• Technically speaking, a separate operation
from VACUUM.

• However, usually done as part of a vacuum
(although you can do an explicit ANALYZE
separately).

• Also handled by the autovacuum daemon.

Explicit ANALYZE.

• Always do an explicit ANALYZE after
major database changes:

• Restore from pg_dump backup.

• pg_upgrade.

• Large INSERT / UPDATE / DELETE bulk
operations.

Autovacuum ANALYZE

• Similar tuple-change parameters as
VACUUM.

• If you have increased the statistics target on
a table…

• … consider changing these to make
ANALYZE more frequent.

“(to prevent xid wraparound)”

• Otherwise known as VACUUM FREEZE.

• Not the same thing (exactly) as VACUUM.

• Often a nasty surprise the first time it
happens, as it just appears after weeks or
months.

• Very high I/O, as it has to (pre-9.6) scan and
potentially rewrite whole table.

What is it?

• VACUUM FREEZE is required because
transaction XIDs are 32 bits wide.

• 2^32 transactions is not all that many.

• Each tuple is “stamped” with the xid that
created it.

• If allowed to wrap around, data could
disappear from the database.

“Freezing your tuples.”

• VACUUM FREEZE marks tuples that are
visible to all transactions.

• < 9.4, with a special XID, ≥ 9.4, with a
flag.

• This prevents data loss through XID
wraparound.

The problem.

• Each page of the table must be inspected
for freeze candidates.

• And rewritten if it has any.

• This generates a lot of I/O, and can happen
at surprising times.

• … like, during periods of heavy traffic.

“Table age”

• The important idea is how “old” the table
is in terms of transaction xids.

• Can be determined by applying the age()
function to pg_class.relfrozenxid.

• Highest possible value is 2^31-1, which is
the disaster point.

fugu=> select relname, age(relfrozenxid) from pg_class where
age(relfrozenxid)<2147483647 order by age(relfrozenxid) desc;
 relname | age
-----------------------------------+-------
 catalog_announcement | 21101
 pg_toast_16550 | 21101
 pg_statistic | 21100
 pg_toast_2619 | 21099
 pg_type | 21099
 pg_toast_97278 | 21098
 engagement_track_log | 21098
 pg_toast_97296 | 21097
 sendgrid_webhook_log | 21097
 auth_group | 21096
 auth_group_permissions | 21096
 pg_toast_16612 | 21096

vacuum_freeze_min_age

• First of the three major vacuum freeze
parameters.

• If a page containing a tuple “this old” is
consulted for other reasons, it is frozen.

• Lowering it can pre-freeze tuples. Little
downside, since it’s writing the page anyway.

vacuum_freeze_table_age

• If a table gets “this old”, when a normal
vacuum is done on the table, it also does a
vacuum freeze.

• Default is relatively low (150m
transactions).

• Raising defers the vacuum freeze “switch-
over”.

autovacuum_freeze_max_age

• When a table gets “this old”, a vacuum
freeze will be done on the table by
autovacuum…

• … even if autovacuum = off!

• Once it reaches this point, let it run. Don’t
kill it; it’ll just keep coming back.

So, how do I
prevent

VACUUM FREEZE?

YOU CAN’T.

VACUUM FREEZE is essential.

• If the “oldest” table in the “oldest” database
reaches 10m transactions to wraparound,
warnings start appearing in the log.

• If the “oldest” table reaches 1m
transactions to wraparound, the database
shuts down.

That Sounds Bad.

• PostgreSQL will shut down and will only
start in single-user mode.

• Then, you have to do the vacuum freeze.

• So, make sure you never ignore those
warnings.

• You are regularly checking the logs for
warnings and errors, right?

The “Coffin Corner.”

• On a busy database, it’s possible to reach
the warning point, but have transactions
being created too fast to avoid shutdown.

• So, make sure you don’t get to that point!

• Repeatedly killing autovacuum processes
because of high I/O can cause this.

• or too high autovacuum_freeze_max_age.

Monitoring.

• Monitor the age of the oldest tuples in the
database.

• check_postgres.pl at bucardo.org

• Don’t set autovacuum_freeze_max_age so
high that you don’t enough “room” to allow
proper vacuum freeze operations.

Manual VACUUM FREEZEs

• autovacuum doesn’t prioritize tables.

• It’s a good idea to do manual VACUUM
FREEZEs (via a cron job, etc.) of the
“oldest” tables.

• https://github.com/pgexperts/flexible-
freeze

• Pick a low-traffic period to run it.

https://github.com/pgexperts/flexible-freeze
https://github.com/pgexperts/flexible-freeze
https://github.com/pgexperts/flexible-freeze
https://github.com/pgexperts/flexible-freeze

Binary Replication Notes.

• Vacuuming the primary vacuums the
secondary automatically.

• But remember all vacuum changes must be
sent down the replication stream.

• hot_standby_feedback = ‘on’ to reduce
query cancellations due to vacuum.

Logical Replication Notes.

• Logical replicas are vacuumed
independently of their primary.

• Incoming logical changes should be
considered “application” workload.

• Same cautions about application workload
apply.

Sidebar: GIN Index Posting.

• GIN indexes are expensive to update.

• Thus, updates are not immediately written
into the index structure.

• Instead, they are written to a “posting list”
that is merged into the index at VACUUM
time.

• Generally, nothing you ever worry about.

But.

• Large, frequently-updated GIN indexes can
have surprising I/O and CPU spikes when
this update occurs.

• If list exceeds a certain size, posting is
forced without a vacuum:

• < 9.5: work_mem

• ≥ 9.5: gin_pending_list_limit

GIN Posting Fixes.

• On ≥9.5, set gin_pending_list_limit to a
smaller value to do more frequent postings
(of less data).

• <9.5, the use of work_mem constrains you
somewhat.

• Manual vacuum may be the answer there.

Innovations!

9.6!

• PostgreSQL 9.6 contains many vacuum-
related improvements.

• From a DBA’s perspective, it’s worth
upgrading just to get those.

• (And parallel query is great, too.)

Incremental VACUUM FREEZE!

• In 9.6, VACUUM FREEZE is now
incremental rather than whole-table.

• Huge improvement!

• All-frozen pages are stored in the visibility
map.

• One big VACUUM FREEZE required after
upgrade.

VACUUM Progress!

• pg_stat_progress_vacuum view.

• One row per autovacuum process.

• Shows phase of autovacuum, number of
blocks scanned, total blocks.

• Finally can answer the “roughly how much
longer will it be?” question.

Controllable GIN Posting

• gin_clean_pending_list()

• Updates the pending list independent of a
VACUUM.

• Handy to separate the operations to
reduce I/O, get the GIN index back to
normal speed, etc.

So, Upgrade!

Questions?

thebuild.com
pgexperts.com

Thank you!

Christophe Pettus
@xof

