

mailto:cpettus@pgexperts.com
mailto:cpettus@pgexperts.com

Welcome!

® Time for the quick skills check:

® Time with Django!?




On the menu.

® Model Design.
® [Efficient use of the ORM.

0. Tran

S

sactions




Batteries included.

® Nothing to buy, nothing to download.

® Stop me to ask questions.

45 \.\L’; g

R

et U ES WIEOHS.




Welcome to my world.

® |ots of clients using Django.

® |ots of clients with minimal database
experience.




The good.

® Django can get a plausible application going
very fast.

® The Django admin is amazingly useful for




The bad.

® The Django ORM does not encourage scalable
programming techniques.

® |t is not unique in this regard, of course.




The ugly.

® Major public-facing site.

® Old site in proprietary everything, replaced
Django and Postgres.




What happened!?

® Horribly slow performance (> 2 minutes to
load a single page).

® 25% of requests died with deadlocks.




The stages.

® Denial:“It’s just launch jitters.”

® Anger:“Why is POSTGRES SO FSCKING
SLOW?”




Acceptance.

® Models created locking problems.

® (Code made terrible use of the ORM.

® Design of the templates defeated

caching.




The goal here is to...

® Understand how we get into these bad
situations.

Avoid the problems at the start of the process,




Model Design




The model and you!

® The classes which Django maps into database
tables.

® |ncludes basic index specifications.




Let’s talk about...

® Good model design.

® Foreign key relationships.

Many-to-many.




Advice from the field.




Don’t use NULL.

® NULL does not do what you expect.

® No matter what you expect.

® SUM(I+NULL) is not | + NULL

& e S SR L Ty ! ¥is

.

L) = 5 - i ay o 5

e L G s A $ . SRl 2 e J = . X el iy
A, s ’ e & oA o A 2



Separate derived data.

® Data that can be from other sources should be
in its own model class.

® Allows recalculation without locking the main




Normalize.

® Don’t duplicate fields in derived or related
objects.

® That's what foreign keys are for.




Primary Keys

® Dijango will create a primary key for you if you
don’t specify one.

Sometimes that’s the right idea.




Separate Application Zones

® Data frequently is coming from different
applications.

Don’t smash them all into one object.




Foreign Keys

® (Good news, bad news.

® Keep rows small and focused.

® Better locking characteristics.




The Best Feature You'll
Never Use.

® Dijango |.3 introduced foreign key deletion
options.

® Do not use them.




So, what do to!?

® |f you almost always return the parent along
with the related object, consider object
inheritance instead.




Indexing.

® Django makes it really easy to create indexes.

® Really, really easy.

Rl

TRig ADS




This could.

® Database size on disk: |57GB.

® Database as a pg_dump (excludes bloat and
indexes): 9GB.




What is a good index!?

® Highly selective.

® Greatly reduces the number of candidate
rows when used.




What is a bad index!?

® Every other index.

® Bad selectivity.

® Rarely used.




Indexing Strategy

® Start with none (except those required by keys
or constraints).

® No, none. Zero. Zip.

g NIk ] e ¥ BTN 5] oS e S ikl e By PR $ . » hGER,
g K S =l & 3 o B | g ’
\/ Alles
£ ] ¥ 4 s ;




Exceptions to the rules.

® There are always some.

® SSDs have different seek characteristics from
spinning disks.




Multi-column indexes.

® [wo choices:

® A single index that includes both. (You'll
need to do this outside of Django in 1.3, but

it - that’s OK: we're all grown-ups, right? T




A single composite index...

® ... will be somewhat smaller than two indexes.

® ... will definitely be faster to update.

... will accelerate a more restricted range of




Two indexes...

® ... will be somewhat larger.

® ... will be definitely be slower to update.

... will help on queries on both columns, but




About that testing thing.

® Your database has much to tell you. Let it do
SO.

e pg stat_activity is a wealth of useful
information...




Migrations

® Dijango doesn’t have any migration tools out of
the box.

® South is pretty nice.




ALTER TABLE applabel ginormoustable
ADD COLUMN hot new flag BOOLEAN
NOT NULL DEFAULT FALSE;




What could go wrong?

® Well, nothing, but...
® T[hat table had 65,000,000 rows in it...

® And was a critical, constantly-used table...

Y




Eisht hours later, the
site was back up.




Amazingly, no one lost
their jobs.

® Adding a column with a DEFAULT rewrites the
table in Postgres.

® Adding a NULLable column with no default
generally does not rewrite the table.




How to handle this?

-- First alternative: Works during table writes.

ALTER TABLE x ADD COLUMN b BOOLEAN NULL;
-- Very fast.
UPDATE x SET b = FALSE;

b
A OK
;




How to handle this?

-- Second alternative: Read-only table.

BEGIN;
CREATE TABLE x_new AS SELECT x.*, FALSE AS b FROM Xx;
add

-- Duplicate table LN

' f

new column.

PO LRPH ey
et

T S s




How to handle this?

® Or just wait until 3am.

® None of these solutions are without their
flaws.




The ORM and Its
Discontents




Let us now praise famous
ORMs.

® The Django ORM:

® Allows for very Python-esque code.

® Handles a wide range of very common



® There are some things at which it does not
excel.

The farther one moves from the Ioad-modify-
store p: N, the w




The basic rules.

|. Do not iterate over QuerySets.

2. If you think you have to iterate over a
QuerySet, see rule #1.




Real code.

gs = Orders.objects.all()
# There are about 2,500,000 rows 1in “orders”.

for order in gs:
ge_in_da

MSata it

A

'y




Iteration: the awful truth

® Defeats Django’s lazy-evaluation mechanism by
dragging everything into memory.

® Hauls data across the wire from the database
jUSt to process it Iocally

S SLF e g N T NI S e GERL MRS 4. AR At s e gl IR e ST d e b Ll SO R e Tt i RS kR St L ISR LB e
\ul A P : ¥ ey v 3 S R e A S v ) L_ g T Cy e i o (e f PO [ e B ] o A e o, L ~rw - » -
‘ "" s 2 3“"' i""' LR ' e ‘”‘ ““c; ’* gl '4 »* ‘&’i?t -."- .’? "' :"'" o AR A S ' i e e e BT AT PR e L ‘7 ey

: PRI Ry IR G ”’ by S Rl Z R S IR i S e T R R S R DS SRR i TR Quak e i A AT Y30




Alternatives

® QuerySet.update()

’

® cursor.execute( UPDATE app orders ...




But, what about...

® Complex filtration that cannot be done in the
database (especially on small result sets).

® Pushing data to another application in an ELI-
i style operatlon ‘
siedia i et s s s s

* Sty e rd Sk 42
- X L3 v oA LAY A 'A:'\’(',\ S
3 - - X > o P, +
¥ ) s oy P, N i g {x h ’ e a5
o S R R o ] ,\.1.‘. Q. AR RS S o a3 T BRSNS R Rl N
g DOt TRl s R e _-,_v_ 3 o : .”~_ X _._,; ke i t’ : v‘ '..4_.,__.'.“,4:;.1 -k\ o \.__-.‘ RS AN gl b Pl i 0T N ._..:-':,‘_,.,,,,.‘,’;.-f&ﬂ,”




How much many objects
are in memory at point A?

gs = Orders.objects.all()
# There are about 2,500,000 rows 1n “orders”.

e
S VT T 5
R




All 2,500,000.




Wait, what!

® Django does lazy evaluation... everyone tells
me so!

® The Django code carefully asks for a slice of
- 100 objects. ..

> Y.
0y

x S
>3 P

A n AN R




For the want of a named
cursor...

® The protocol between the Postgres client and

server only does partial sends when using
named cursors.

® psycopg? fully supports named cursors.



OK, what about LIMIT?

® |n Django, gs[:x] adds a LIMIT clause to the
SQL.

® Remember that LIMIT isn’t really useful




The perils of OFFSET.

® gs[x:y] does an OFFSET x LIMIT y-x.

® OFFSET has to consider and toss every object
from | to x-1.




® The most abused query operation in Django.

® |t looks so innocent, just sitting there, doesn’t
it!




Not so innocent now.

SELECT ""stuff_thing"".""id"", ""stuff_thing"".""thing1"", ""stuff_thing"".""thing2"" FROM ""stuff_thing"" WHERE
"tstuff_thing"".""id"" IN (3702, 3705, 3708, 3711, 3714, 3717, 3720, 3723, 3726, 3729, 3732, 3735, 3738, 3741, 3744, 3747, 3750,
3753, 3756, 3759, 3762, 3765, 3768, 3771, 3774, 3777, 3780, 3783, 3786, 3789, 3792, 3795, 3798, 3801, 3804, 3807, 3810, 3813, 3816,
3819, 3822, 3825, 3828, 3831, 3834, 3837, 3840, 3843, 3846, 3849, 3852, 3855, 3858, 3861, 3864, 3867, 3870, 3873, 3876, 3879, 3882,
3885, 3888, 3891, 3894, 3897, 3900, 3903, 3906, 3909, 3912, 3915, 3918, 3921, 3924, 3927, 3930, 3933, 3936, 3939, 3942, 3945, 3948,
3951, 3954, 3957, 3960, 3963, 3966, 3969, 3972, 3975, 3978, 3981, 3984, 3987, 3990, 3993, 3996, 3999, 4002, 4005, 4008, 4011, 4014,
4017, 4020, 4023, 4026, 4029, 4032, 4035, 4038, 4041, 4044, 4047, 4050, 4053, 4056, 4059, 4062, 4065, 4068, 4071, 4074, 4077, 4080,
4083, 4086, 4089, 4092, 4095, 4098, 4101, 4104, 4107, 4110, 4113, 4116, 4119, 4122, 4125, 4128, 4131, 4134, 4137, 4140, 4143, 4146,
4149, 4152, 4155, 4158, 4161, 4164, 4167, 4170, 4173, 4176, 4179, 4182, 4185, 4188, 4191, 4194, 4197, 4200, 4203, 4206, 4209, 4212,
4215, 4218, 4221, 4224, 4227, 4230, 4233, 4236, 4239, 4242, 4245, 4248, 4251, 4254, 4257, 4260, 4263, 4266, 4269, 4272, 4275, 4278,
4281, 4284, 4287, 4290, 4293, 4296, 4299, 4302, 4305, 4308, 4311, 4314, 4317, 4320, 4323, 4326, 4329, 4332, 4335, 4338, 4341, 4344,
4347, 4350, 4353, 4356, 4359, 4362, 4365, 4368, 4371, 4374, 4377, 4380, 4383, 4386, 4389, 4392, 4395, 4398, 4401, 4404, 4407, 4410,
4413, 4416, 4419, 4422, 4425, 4428, 4431, 4434, 4437, 4440, 4443, 4446, 4449, 4452, 4455, 4458, 4461, 4464, 4467, 4470, 4473, 4476,
4479, 4482, 4485, 4488, 4491, 4494, 4497, 4500, 4503, 4506, 4509, 4512, 4515, 4518, 4521, 4524, 4527, 4530, 4533, 4536, 4539, 4542,
4545, 4548, 4551, 4554, 4557, 4560, 4563, 4566, 4569, 4572, 4575, 4578, 4581, 4584, 4587, 4590, 4593, 4596, 4599, 4602, 4605, 4608,
4611, 4614, 4617, 4620, 4623, 4626, 4629, 4632, 4635, 4638, 4641, 4644, 4647, 4650, 4653, 4656, 4659, 4662, 4665, 4668, 4671, 4674,
4677, 4680, 4683, 4686, 4689, 4692, 4695, 4698, 4701, 4704, 4707, 4710, 4713, 4716, 4719, 4722, 4725, 4728, 4731, 4734, 4737, 4740,
' .G 755, 4758 767, 4770, 473 : v » o 4803,




Large INs are a mess.

® Very expensive for the database to parse.

® Very expensive for the database to execute.

° If there are potentlally more than IO I5 |tems

A 901 ] 3% Ty 1 L LT B AR RN, 1 Yo -,,, -
; 5 st Y o - lpongm & X o J ek
B SELER e IR A G <~ i af & v/ L i =\
At Lo | 1 k= ‘.‘,‘-“ SRR f("‘ H Ry B Y e '.w: A ; '.' s 7.’:‘.. ; 5 f‘ H =5 B | :, 'Cr ‘\ "{_A,



QuerySet objects.

® Once evaluated, a QuerySet holds on to its
result set.

® Reuse the same result set whenever




Model Objects are Heavy.

® Model objects take a long time to create.

® |f you are going to use more than six objects in
one view function, switch to raw SQL.

X PR A LT T r o Pk o, Y P e Ry P A AN, e L) & . £ . S g e SO YR T o I S il 3 3 1 S S A S g A x { A P g . R e A R o b R O i
« 5 = SR DAY e AL RS A8 PN LI B OUXEINS BV e R el o W i e ARl NS L St X By R Ve WON e e Nesf ety 4 r vl 2 S D HEL JICEE T SO S A T S R N o e S 4 L
L Ly gy R s A T PP Nk W VA =a\VAE e - ST E . e . S . N N Mo o T PRl s N4 o Ay i3 54 y | 7 e g e R g o T e B o il s ks S
= WY e Tre ; ’:. w2y 2( 2 £ 'k't ' 455 ’\Qh'- 1V 'l’ AN e M pes T ',7 [ B | | i? .S clatd :';-"""d A = i ’f i a‘?\' 11 E g x| m N it "} T 9 y '.{1 2 \ ':“ P 'J-’:' T e oy "“,"'A"
2 = 2 A FE B AR e Y [ S G (e JH o e A A R & e b ey B W J a7 A =¥t B e [ | S{INE [ K2 ML Aoty k SIS
" < oy ',‘:4 ,v‘ ’\‘._, +, ¥ orPY ""'u-"-'. .\ £o58 S0 TS Ny £ f' - :.,,"t:v\..._ Yot K & ”4_‘_ <r‘ \ V A 1 '.-"" ' .”{. .,.1 < { N -” i A - S | .-.‘ X | -+ ! '\_'«‘ = “‘.-.p‘. - S B | o | .p..:' | N _,>- D .q Lariat L S, ,.,.‘:>- S '?"V}"t .)ﬂ'-'!v 7
= - 4 : p ¥ i W W i, B S IS "y A # A, - - Ladd e o e ¥ 5% g 4 7




Workload separation.

® The question was, "How many of each widget
has been bought to date’?

® The answer was, “Your site has ground to a halt
-each time the vendor logs in and tries to find




What it looked like.

SELECT COUNT(*) FROM orders WHERE widget_1d=3001;
SELECT COUNT(*) FORM orders WHERE widget_id=3013;
SELECT COUNT(*) FROM orders WHERE widget_1id=3017;
SELECT COUNT(*) FORM orders WHERE widget_1d=3022;
SELECT COUNT( ) FROM orders WHERE Wldget 1d= 3045

A SRR S OIS DR S G B ol TR e USRI oyt |~ WA E A B P BTt Y ) RN _
< y A & Y 3 g o e N (et Lo fnlronpeiloed @ * @ [~ LGS o I [ £ / ] 4,., [+X ‘4 R A ip ,_‘ Q
Rl RFREA TRt A S R M I b ) W -’k % .( -ﬁ Sl S5 WHRLCI S E "Av ,,e <, e el -‘_
T R T A O e A W P s N B DA ey N e ey P U PR e T TR T T e i s e o R B B Y
¢ 4 X y R o N s KRS N d L o S ...--:. 5 g S 2y 1, 4 PR e S " S o e & T M) s .',u'-:'



The code was, of course...

wgt = Widget.orders.filter(vendor=cur_vend)
total sold = 0
for widget in wgt:

total sold +=




Well, at least it wasn’t
an IN.

® FEach vendor could run this query as much as
they wanted...

® ... on the same system that was taking orders.




Separate reporting and
transactions.

® First option: Daily dump/restore of the
transactional system.

® Cheap and cheerful.




Learn to love the ORM.

® Eschew iteration:let the database do the data
reduction part.

Limit the size of query sets.




Interlude: Celery.




elery: negative calories!

® Very popular Python job queuing system.

® |[ntegrates very nicely with Django




Don’t use the database as
the job queue!

® Celery polls the job queue.

® All the time.

® From every worker process.




Transactions
and Locking




Let’s be honest with
ourselves.

® Dijango’s transaction management is a mess.

® |t clearly “just grew” from humble origins.

® Even the terminology is utterly unclear.




Transactions out of the
box.

address = Address(street_address="1112 E Broad St",
city="Westfield", state="NJ", zip="07090")

address.save()




Wrong, wrong, wrong.

o BEGIN;
® |NSERT INTO Address VALUES (...);
2 LQUEL




Default behavior.

® |f you do nothing, the default behavior is to
wrap each .save() in its own transaction.

® This is probably not what you want.




What do we want?

® Read-only view functions don’t bother creating
a transaction at all.

® Read/write view functions run in their own

L[]
~ e @ o
e

FATRE
AP T AL
T SRR A
LR ARk
AL TN




Transaction Middleware

® Puts the database under “transaction
management.’

® Sets psycopg2 to open a transaction the first
time the database is touched.




Much closer!

® But read-only transactions still have a
transaction defined around them.

® Can we get rid of it!




autocommit.
How does it work!?

® Worst. Parameter. Name. Ever.

® autocommit turns off automatic commits.

® You want to run it on when running on

R L



autocommit...

® ... sets psycopg?2 so that it does not
automatically start a transaction at all.

® Gets rid of the transaction on read-only




IDLE IN TRANSACTION

® A Postgres session state, meaning the session
has an open transaction but is not working.

® They should be extremely rare.

g DRME RN TR > y YA { TR T LA T ool ‘ 3 N [ A PR AR D ave o } Yo e A "y A iRy ol el A o e S e e e
{ LR s 18 » 2 B P PPy S NP S 2 S B e el : e e - FrRRRA s W s R e it S Ay 2 SA LA ‘e PRy E of - IR s [ T FY e ady) DAL MR = § 0 s AP R e B F T O 2 RS- I Ly P o 8
SRS 3 AR EO Sy . .Y, . et U e < " Ve 5 = SENT i i o B ¥ s~ X 7 T N -~ A Rl T \‘,;,"_ T N T L S S R AR g S g
Ve Y oncoey N 1 B % > o 13 o WA B <P ﬂ et & o GRS o R e &l @ /) } 1 (WO & Il y r i X A AR S TS R oY o
A FALD, v FEE B Ry oY Bra T Bl < e e Y [ (L @ Bl Eel 'L JICJIJLUI. SI W E =7 [ O AR Yra ] B & PR B B e | T by e T AT R e )
P | B P e N & o & N T T "IN T\ 2 A I8 N - SN 1N\ [ | A AWk = DR s e o Py, W PR A ]
d s el Tt M e Nl e e w o W NS (}_.-‘ N N e il g W B I S e L ANTUN s L Nl i N N B N S R ked S e BRSPS P

@ ol O
ot A



Session state of \WW&TERY

® Dijango application are notorious for leaving
sessions open in Ildle in Transaction.

® The path through the Django code which
allows for this is extremely unclear.




Transaction cheat-sheet.

® Run with autocommit on.

® Wrap database-modifying code with

@commlit _on_success.




Or use xact()

® Alternative transaction decorator for
PostgreSQL.

® Use it as part of a transaction recipe.



https://github.com/Xof/xact
https://github.com/Xof/xact

Locking: A Primer.

® Readers do not block readers to the same row
(it would be kind of dopey if they did).

® Writers do not block readers; they create a
new version of the row.




nds of locks.

® There are a whole ton of different kinds of
table locks.

... which we are going to ignore.




Transactions and locks.

® | ocks are only held for the duration of a
transaction.

® Once the transaction either commits or rolls
“back, the lock is released.




Avoiding lock conflicts.

® Modify tables in a fixed order.

® VWhen updating multiple rows in a table, do so
in a fixed order (by id or some other




Foreign-key locks.

® Updating a dependent record (usually!) takes a
share lock (as of 9.0) on the parent record.

® However, it does not always do so, which can
 lead to deadlocks.




Interlude: Templates




Django view function style

® Collect the input data.

® Do the business logic.

® Gather the data necessary for the view



The problem.

® The view code really doesn’t know what the
template is going to draw.

So it has to fill in a superset of the possible




The bad approach

= RequestContext(request)
C‘results’] = list(qgs)

‘ohyoumightneedthis’] = list(qgs3)

C

C

c[‘moresults’] = list(qgs2)
ClL

C éohdontfor etthat 1,$

e 2 #

.

e b SN AL S S N
» g il e B PARP oy
N DL s ot P




QuerySets are lazy!

® This is where the lazy evaluation of QuerySets
is most useful.

Don’t run them unless you have to.




Thank You!




