
thebuild.com
pgexperts.com

PostgreSQL
Unboxing

Christophe Pettus
PostgreSQL Experts, Inc.

Welcome!

• Christophe Pettus

• Consultant with PostgreSQL Experts, Inc.

• Based in sunny San Francisco, California.

• Technical blog: thebuild.com

• Twitter: @xof

• cpettus@pgexperts.com

mailto:christophe.pettus@pgexperts.com
mailto:christophe.pettus@pgexperts.com

My background.

• PostgreSQL person since 1998.

• Came to databases as an application
developer and architect.

• I had to suffer for my art.

• Now, it’s your turn!

What is this?

• “Just enough” PostgreSQL for a new
developer.

• PostgreSQL is a rich environment.

• Far too much to learn in a single tutorial.

• But enough to be dangerous!

The DevOps World

• “Integration between development and
operations.”

• “Cross-functional skill sharing.”

• “Maximum automation of development and
deployment processes.”

• “We’re way too cheap to hire real
operations staff. Anyway: Cloud!”

This means…

• No experienced DBA on staff.

• Have you seen how much those people
cost, anyway?

• Development staff pressed into duty as
database administrators.

• But it’s OK… it’s PostgreSQL!

Everyone Loves PostgreSQL!

• Fully ACID-compliant relational database
management system.

• Richest set of features of any modern
production RDMS.

• Relentless focus on quality, security, and
spec compliance.

• Capable of very high performance.

But, it’s hard to
administer!

*This machine

was bought in

1997.

*It is running

PostgreSQL

9.2.1.

*I spend 10

minutes a

year on

maintenance.

Background

Elephant evolution.

• Derives from the 1986 POSTGRES project
at the University of California, Berkeley.

• This also gave rise to Illustra, thence
Informix.

• And thence Sybase, and from there MS SQL
Server.

• Proudly open source since 1995.

Licenses matter.

• Licensed under the PostgreSQL License,
similar to BSD/MIT.

• Allows for commercial derivatives, but…

• … not owned by a commercial
organization.

• No one will take your elephant away.

Cross-Platform.

• Operates natively on all modern operating
systems.

• Plus Windows.

• Scales from development laptops to huge
enterprise clusters.

Work in progress.

• Under constant development.

• A major release every 9-12 months or so.

• Constant minor releases.

• Vanishingly small security or data
corruption bugs.

• Community focus on correctness and data
integrity.

A quick spin around the elephant.

• PostgreSQL is the most feature-rich open
source database, full stop.

• Focus on “big database” features.

• High-rate OLTP, data warehousing…

• Equals or exceeds commercial DBs.

• Far more features than we can discuss
here.

But we’ll try!	

• Huge range of integrated types.

• User-definable types.

• Built-in fast, multi-language full-text search.

• Extremely extensible.

Rich Data Types.

• Numeric

• Character

• Date/Time

• Boolean

• Enums

• Geometric

• Network
Addresses

• Bit Strings

• Text-Search
Related

• UUID

• XML

Powerful Extensions.

• PostGIS – De-facto standard geographic
information system.

• Integrated programming languages

• Python, Perl, Ruby, Java, R…

• Coming soon, integrated JSON and V8.

• It’s WebScale™!

Installation

A variety of methods.

• Build from source.

• Works on any platform.

• Maximum control.

• Requires development tools.

• Does not come with platform-specific
utility scripts (/etc/init.d, etc.).

Packages.

• Packages available for all major Linux
platforms.

• May need to use custom repositories.

• http://www.postgresql.org/download/linux/

• Debian-derived and RedHat-derived have
different directory structures.

• We’ll discuss those in a bit.

http://www.postgresql.org/download/linux/
http://www.postgresql.org/download/linux/

Other OSes.

• Windows: One-click installer available.

• OS X: One-click installer, MacPorts, Fink
and Postgres.app from Heroku.

• For other OSes, check postgresql.org.

Creating a database cluster.

• A single PostgreSQL server can manage
multiple databases.

• The whole group on a single server is
called a “cluster”.

• This is very confusing, yes.

A Database.

• Databases are autonomous collections of
objects (tables, schemas, etc.).

• You cannot directly join between them.

• Foreign data wrappers coming soon!

• MySQL “databases” are PostgreSQL
“schemas,” more or less.

initdb

• The command to create a new database
cluster is called initdb.

• It creates the files that will hold the cluster.

• It doesn’t automatically start the server.

• Many packaging systems automatically
create and start the server for you.

pg_ctl

• Built-in command to start and stop
PostgreSQL.

• Frequently called by init.d, upstart or other
scripts.

• Use the package-provided scripts.

psql

• Command-line interface to PostgreSQL.

• Run queries, examine the schema, look at
PostgreSQL’s various views.

PostgreSQL directories

• All of the data lives under a top-level
directory.

• Let’s call it $PGDATA.

• Find it on your system, and do a ls.

• The data lives in “base”.

• The transaction logs live in pg_xlog.

Configuration files.

• On most installations, the configuration
files live in $PGBASE.

• On Debian-derived systems, they live in
/etc/postgresql/9.2/main/...

• Find them. You should see:

• postgresql.conf

• pg_hba.conf

Configuration

Configuration files.

• Only two really matter:

• postgresql.conf — most server settings.

• pg_hba.conf — who gets to log in to
what databases?

Users and roles.

• A “role” is a database object that can own
other objects (tables, etc.), and that has
privileges (able to write to a table).

• A “user” is just a role that can log into the
system; otherwise, they’re synonyms.

• PostgreSQL’s security system is based
around users.

pg_hba.conf

postgresql.conf

• Holds all of the configuration parameters
for the server.

• Find it and open it up on your system.

postgresql.conf

We’re All Going To Die.

It Can Be Like This.

Important parameters.

• Logging.

• Memory.

• Checkpoints.

• Planner.

• You’re done.

• No, really, you’re done!

Logging.

• Be generous with logging; it’s very low-
impact on the system.

• It’s your best source of information for
finding performance problems.

Where to log?

• syslog — If you have a syslog infrastructure
you like already.

• LOCAL0.* ­/var/log/postgresql

• Otherwise, CSV format to files.

• Do not use standard format; it’s obsolete.

What to log?

log_destination = 'csvlog'
log_directory = 'pg_log'
logging_collector = on
log_filename = 'postgres-%Y-%m-%d_%H%M%S'
log_rotation_age = 1d
log_rotation_size = 1GB
log_min_duration_statement = 250ms
log_checkpoints = on
log_connections = on
log_disconnections = on
log_lock_waits = on
log_temp_files = 0

Memory configuration

• shared_buffers

• work_mem

• maintenance_work_mem

shared_buffers

• Below 2GB (?), set to 20% of total system
memory.

• Below 32GB, set to 25% of total system
memory.

• Above 32GB (lucky you!), set to 8GB.

• Done.

Shared memory follies.

• PostgreSQL allocates all shared memory at
startup.

• Most Linux kernels don’t allow much
shared memory allocation.

• Relevant parameters are SHMMAX and
SHMALL.

To adjust.

• Calculate: shared_memory in bytes, +20%.

• sysctl -w kernel.shmmax = (value)

• sysctl -w kernel.shmall = (value)/4096

• Sorry about that; there’s a lot of history
there.

OOM Killer Considered Harmful.

• The Linux OOM killer is a bug, not a
feature, on PostgreSQL servers.

• vm.overcommit_ratio = 100

• vm.overcommit_memory = 2

• Swap = RAM.

work_mem

• Start low: 32-64MB.

• Look for ‘temporary file’ lines in logs.

• Set to 2-3x the largest temp file you see.

• Can cause a huge speed-up if set properly!

• But be careful: It can use that amount of
memory per planner node.

maintenance_work_mem

• 10% of system memory, up to1GB.

• Maybe even higher if you are having
VACUUM problems.

• (We’ll talk about VACUUM later.)

effective_cache_size

• Set to the amount of file system cache
available.

• If you don’t know, set it to 50% of total
system memory.

• And you’re done with memory settings.

Checkpoints.

• A complete flush of dirty buffers to disk.

• Potentially a lot of I/O.

• Done when the first of two thresholds are
hit:

• A particular number of WAL segments
have been written.

• A timeout occurs.

Checkpoint settings.

wal_buffers = 16MB

checkpoint_completion_target = 0.9

checkpoint_timeout = 10m-30m # Depends on restart time

checkpoint_segments = 32 # To start.

Checkpoint settings, 2.

• Look for checkpoint entries in the logs.

• Happening more often than
checkpoint_timeout?

• Adjust checkpoint_segments so that
checkpoints happen due to timeouts
rather filling segments.

• And you’re done with checkpoint settings.

Checkpoint settings notes.

• The WAL can take up to 3 x 16MB x
checkpoint_segments on disk.

• Restarting PostgreSQL can take up to
checkpoint_timeout (but usually less).

Planner settings.

• effective_io_concurrency — Set to the
number of I/O channels; otherwise, ignore
it.

• random_page_cost — 3.0 for a typical
RAID10 array, 2.0 for a SAN, 1.1 for
Amazon EBS.

• And you’re done with planner settings.

Do not touch.

• fsync = on

• Never change this.

• synchronous_commit = on

• Change this, but only if you understand
the data loss potential.

Changing settings.

• Most settings just require a server reload
to take effect.

• Some require a full server restart (such as
shared_buffers).

• Many can be set on a per-session basis!

Concepts

Write-Ahead Log, an introduction.

• A continuous stream of (committed)
database modifications.

• Broken into 16MB files, called “segments.”

• Logically, starts with database cluster
creation and lasts forever.

• In reality, that would be insane.

WAL, what is it good for?

• Used to restore the database on an
abnormal termination.

• Absolutely essential to avoid data
corruption.

• The replay has to happen from the last
consistent state.

• = the last time a checkpoint finished.

Important WAL Facts.

• It is time-ordered, so you can replay it to a
particular point in time.

• It is append-only, so it pays to put it on its
own file system.

• It is the basis for both warm standby and
streaming replication.

MVCC

• Multi-Version Concurrency Control.

• Introduced by PostgreSQL, now used by
pretty much everyone.

• Alternative to “pessimistic” locking
strategies.

• Allows for much higher performance.

MVCC rules.

• Readers (to the same row) do not block
readers.

• Writers do not block readers — readers
get the old version of the row.

• Readers do not block writers.

• Writers do block writers to the same row.

Versioning.

• Multiple versions of the same row can
exist.

• Deleted and updated rows are not
immediately removed from the database.

• Some other transaction might still be able
to see them.

• Solution? VACUUM.

VACUUM

• Scans each table for “dead” versions of
tuples, and marks them as free.

• Since 8.0, handled for you by the
autovacuum daemon.

• Good to manually vacuum after major
update/delete operations.

ANALYZE

• The planner requires statistics on each
table to make good guesses for how to
execute queries.

• ANALYZE collects these statistics.

• Done as part of VACUUM.

• Always do it after major database changes
— especially a restore from a backup.

Locking.

• PostgreSQL takes implicit locks on objects
to maintain concurrency control.

• Tuple locks on are on individual database
rows.

• Table, schema and database locks are on
higher-level objects.

Tuple locks.

• Share lock — Prevents the row from being
modified, but it can be read; any number of
sessions can hold a shared lock on the
same row.

• Exclusive lock — Prevents the row from
being modified by anyone else; only one
session can hold an exclusive lock.

Surprising locks.

• Writing a dependent row can cause a share
lock on the parent in a foreign key
relationship.

• Updates on that parent row can then block.

• This is the reason for the fast/slow data
rule.

Table-level locks.

• Taken during schema modifications.

• Held only for as long as the schema
modification goes on.

• But this can be a very long time if you are
adding a non-NULL column.

• Add column as NULL, set to non-NULL
default later.

Explicit locking.

1. Taking an explicit lock on a table is a sign of
an application problem.

2. If you think you can only solve your
problem with an explicit lock, see #1.

3. If you are sure you can only solve your
problem with an explicit lock, see #2.

Transaction modes.

• PostgreSQL supports multiple transaction
modes.

• READ COMMITTED

• REPEATABLE READ

• SERIALIZABLE

A reminder about MVCC.

• All transactions see a snapshot of the
database at the start of a transaction.

• Only writes to the same tuple (row) block.

• The transaction isolation levels control
how “perfect” this snapshot model is.

READ COMMITTED

• Each transaction sees a snapshot of the
database at the time it starts.

• Pure read-only transactions are always
consistent.

• Transactions lock, but do not fail.

• Conflicting writes to the same row can
cause an inconsistent snapshot.

READ COMMITTED

• BEGIN;

• SELECT i FROM t WHERE k=3;
-- Other transaction sets i to 7.

• UPDATE t SET i=12 WHERE k=3;

• COMMIT;

READ COMMITTED

• BEGIN;

• SELECT i FROM t WHERE k=3
 FOR UPDATE;

• UPDATE t SET i=12 WHERE k=3;

• COMMIT;

REPEATABLE READ

• Each transaction gets a perfectly consistent
snapshot.

• Multiple writes to the same row can cause
a transaction to be aborted.

• The aborting transaction can then be rerun.

• Not true serializable transactions.

REPEATABLE READ

• BEGIN;

• SELECT MAX(last_inserted_batch)…

• Insert any newer records.

• COMMIT;

• No traditional solution except a full table
lock (or equivalent).

SERIALIZABLE

• New in 9.1!

• True mathematical serializability.

• Has overhead (although not much).

• As with REPEATABLE READ, transaction
aborts can result.

SERIALIZABLE success.

• BEGIN;

• SELECT MAX(last_inserted_batch)…

• Insert any newer records.

• Losing transaction aborts here.

• COMMIT;

Transaction philosophy.

• Keep transactions short.

• Do not leave transactions open during
asynchronous events.

• Long-running transactions can create a
myriad of problems.

Schema Design

A huge topic.

• We can only scratch the surface here.

• In general:

• Keep your data in normal form.

• Do not be afraid to do joins.

• Do not denormalize except in response
to a very real problem.

Fast/slow rule.

• Do not put fast changing data in the same
table as slow changing data.

• Especially if the table is the parent of a lot
of other tables via foreign keys.

• This will avoid a large class of locking
problems.

Indexing strategy.

• A good index is:

• Highly selective.

• Frequently used.

• Or required to enforce a constraint.

• A bad index is:

• Everything else.

Index creation.

• Create indexes on the basis of real-life
queries.

• Look for sequential scans that can be sped
up.

• Indexes are not cheap; drop any that are
not being used.

Checking index usage.

• pg_stat_user_tables

• pg_stat_user_indexes

• Look for lots of sequential scans, or

• Not many index scans.

Pitfalls.

SELECT COUNT(*) FROM ...

• Everyone does this.

• SELECT COUNT(*) FROM MyHugeTable;

• “Why is PostgreSQL so slow?”

• Implemented as a full table scan.

• So, don’t do this.

In-place upgrade.

• Upgrading major versions (9.0 > 9.1)
requires a pg_dump and pg_restore.

• No in-place upgrade in core yet.

• pg_upgrade is a thing.

• Trigger-based replication is another option.

autovacuum

• Background process that does
VACUUMing.

• Handles most workloads well.

• Sometimes, can wake up at exactly the
wrong time.

• Or run wild.

Manual VACUUM

• Disable AUTOVACUUM.

• Run VACUUM manually at low-load times.

• You must run VACUUM!

• Be sure to do ANALYZE at the same time.

Bulk loading data.

• Use COPY, not INSERT.

• COPY does full integrity checking and
trigger processing.

• Do a VACUUM afterwards.

Debugging

“This query is slow.”

• EXPLAIN or EXPLAIN ANALYZE

• The output is… somewhat cryptic.

• http://explain.depesz.com/

http://explain.depesz.com
http://explain.depesz.com

“The database is slow.”

• What’s going on?

• pg_stat_activity

• tail -f the logs.

• Too much I/O? iostat 5

“The database isn’t responding.”

• Make sure it’s up!

• Can you connect with psql?

• pg_stat_activity

• pg_locks

Backup

pg_dump

• Built-in dump/restore tool.

• Takes a logical snapshot of the database.

• Does not lock the database or prevent
writes to disk.

• Low (but not zero) load on the database.

pg_restore

• Restores database from a pg_dump.

• Is not a fast operation.

• Great for simple backups, not suitable for
fast recovery from major failures.

Point-in-time recovery

• Combine file-system level snapshots of the
database with archives of the WAL file.

• File system snapshot does not need to be
atomic or consistent.

• Can be used to recover to a particular
point-in-time in case of logical-level failures.

PITR process, an overview.

• Start archiving WAL segments.

• Make a base backup.

• Keep archiving WAL segments.

• Lather, rinse, repeat.

• The WAL segments plus the base backup
are your backup.

Archive WAL segments.

• archive_mode = on

• archive_command = …

• Archive these to a different machine than
your primary database server!

• On a cloud host? Make sure your archive
machine is really on different physical
hardware.

Do a base backup.

• pg_start_backup(‘label’, true);

• Do a file-system level copy.

• Yes, it will be inconsistent. No, we don’t
care.

• PostgreSQL continues operating.

• pg_stop_backup(‘label’, true);

Keep archiving WAL segments.

• The WAL segments plus the base backup
are your backup.

• You can replay the WAL segments to any
point in time (after the backup was
complete).

• When it’s been too long to recover quickly,
do another base backup.

Downsides.

• 16MB a piece for each WAL segments.

• Replaying WAL segments takes a while.

• Doing the base backup may be prohibitively
long.

• The next step in data security is…

Warm standby.

• Secondary server continually integrates the
WAL segments.

• Can come back up instantly in the event of
primary failure.

• You still need the base backup and WAL
segments to do PITR recovery though.

• You can’t go back in time.

Warm standby, the bad news.

• The secondary cannot be used for queries.

• No load balancing here.

• Managing the WAL segments can be a pain.

• The secondary moves forward only as fast
as the WAL segments can be moved.

• The next step, then, is…

Replication

Replication options.

• PostgreSQL’s built-in streaming replication.

• Trigger-based replication:

• Slony

• Bucardo

• Londiste

Built-in replication.

• Available in the core since 9.0.

• Read/write master.

• Read-only secondaries.

• Single-level tree of secondaries to one
master.

Advantages.

• Very fast.

• Secondaries can be queried, making it great
for load balancing.

• DDL changes are automatically pushed to
secondaries.

The bad news.

• All-or-nothing: The entire database cluster
must be replicated.

• Any change is immediately propagated,
including your mistakes.

• Requires some tuning for query
cancellation issues.

Setting up.

• Do a base backup.

• Set up recovery.conf correctly.

• Bring up the secondary.

• Profit.

Tools for replication.

• pg_basebackup — Built in tool for doing a
base backup to prime a secondary.

• repmgr.org — Prepackaged tools for
setting up and monitoring replication.

Trigger-based replication.

• Installs triggers on tables on master.

• A daemon process picks up the changes
and applies them to the secondaries.

• Third-party add-ons to PostgreSQL.

Trigger-based rep: Good.

• Highly configurable.

• Can push part or all of the tables; don’t
have to replicate everything.

• Multi-master setups possible (Bucardo).

Trigger-based rep: Bad.

• Fiddly and complex to set up.

• Schema changes must be pushed out
manually.

• Imposes overhead on the master.

Pooling, etc.

Why pooling?

• Opening a connection to PostgreSQL is
expensive.

• It can easily be longer than the actual query
time.

• Above 200-300 connections, use a pooler.

pgbouncer

• Developed by Skype.

• Easy to install.

• Very fast, can handle 1000s of connections.

• Does not to failover, load-balancing.

• Use HAProxy or similar.

pgPool II

• Does query analysis.

• Can route queries between master and
secondary in replication pairs.

• Can do load balancing, failover, and
secondary promotion.

• Higher overhead, more complex to
configure.

Hardware, System

Cloud hosting.

• Cloud hosting has terrible I/O.

• Databases (above a certain size) are I/O
bound.

• You can see where this is going.

Making the best of a bad situation.

• Get as much RAM as you can afford (up to
2x database size).

• CPU capacity is not as important as RAM.

• Make sure the underlying storage system is
reliable.

Playing safe.

• Always use replication.

• Make sure your replica is on a different
physical machine than the primary.

• EC2 has client-affinity for boxes.

• Store configurations, etc. in a VCS; machines
can die unexpected.

Speaking of EC2.

• EBS striping can get you some performance
benefit…

• … at the expense of the EBS snapshot
capability.

• Ubuntu 11.04 seems to be the most stable.

• EBS can fail.

• Check out WAL-E from Heroku.

Your own(-ish) hardware.

• SSDs if you can afford it, SAS drives
otherwise.

• RAID10.

• Put pg_xlog on its own volume.

• Move pg_stat_tmp to a RAM disk.

• xfs (or ext4).

Tools

Monitor, monitor, monitor.

• Use Nagios / Ganglia to monitor:

• Disk space — at minimum.

• CPU usage

• Memory usage

• Replication lag.

• check_postgres.pl (bucardo.org)

Graphical clients

• pgAdmin III

• Comprehensive, open-source.

• Navicat

• Commercial product, not PostgreSQL-
specific.

Log Analysis

• pgFouine

• Traditional, not maintained much
anymore.

• Requires a patch for 9.1 log files.

• pgbadger

• Brand new, actively maintained.

Questions?

Thank you!

@xof
cpettus@pgexperts.com

mailto:cpettus@pgexperts.com
mailto:cpettus@pgexperts.com

