
thebuild.com
pgexperts.com

Django Under
Massive Loads

Christophe Pettus (@xof)
PostgreSQL Experts, Inc.



What is this talk?

• PostgreSQL Experts, Inc. is a database 
consultancy.

• You probably guessed that.

• We also have an applications development 
practice.

• We mostly do Django development.



Tales from the battlefield.

• We have clients who have very, very large 
Django sites.

• We’ve collected a lot of wisdom on how 
they managed to keep their sites up.

• This talk is a distillation of their wisdom.

• Others (especially us) have made all these 
mistakes, so you don’t have to.



Selection bias noted.

• We’re a PostgreSQL shop.

• You probably guessed that, too.

• Thus, this will have some PostgreSQL-
specific information.

• Most of it applies to other database 
products, too.



Audience.

• Application developers just getting started 
on the next big thing.

• … or whose site threatens to become the 
next big thing.

• … or who just don’t want to appear in 
Hacker News in a bad way.



Django can do it.

• Django runs some of the busiest sites on 
the web.

• Disqus, Instagram.

• If it can run those sites, it can run yours.

• Small optimizations can make a huge 
difference.



Structure.

• Tips and tricks.

• Mostly things not to do.

• Please ask questions!

• Please disagree!

• And now, let’s start with…



The (Very)
Front End



Front-end servers.

• Everyone obsesses about them.

• They don’t matter.

• No, really, they don’t matter.

• Once you’ve fixed everything else, worry 
about that.

• You’ve never fixed everything else.



OK, OK, fine.

• ngnix.

• gunicorn.

• + gevent.

• You now have a slide you can show your 
boss.

• It’s from an expert!



Party like it’s 1999.

• Most of the time processing a request is 
after the first byte is received by the client.

• Keeping web pages small, clean and light will 
make more difference than almost anything 
else.

• Use HTML Boilerplate, Twitter Bootstrap? 
Trim, trim, trim to what you need.



Avoid “site pestering.”

• Avoid a large flurry of JavaScript requests 
back to the server from the initial page.

• Each one has the full round-trip latency of 
the first request.

• Reduce the amount of data you need to 
get, and batch the calls together.



Use a CDN for static content.

• Serving common static content is a terrible 
use of your bandwidth.

• CDNs can significantly improve your 
overall page-load time.

• Don’t use for dynamic content: propagation 
rates are just too slow.

• If you can afford it, a caching CDN?



Use a front-end cache.

• ngnix, Varnish — or both!

• Don’t use JavaScript callbacks on cached 
pages.

• Rather defeats the purpose of a cache.

• Use JavaScript and HTML5 local storage for 
trivial customizations.

• Cookies defeat caching!



DNS Servers.

• A surprisingly large contributor to page-
load time.

• Use a specialist DNS service.

• EasyDNS is fast and cheap.

• Especially important if you have multiple 
subdomains on a single page.



The View Layer



Template-first design.

• Let the template drive your data 
acquisition.

• Don’t do ORM operations unless the 
particular template expansion actually 
needs it.

• Put QuerySets and callables, rather than 
evaluated data, in the template contexts.



Cache everything.

• Django has extensive template caching 
facilities. Use them.

• Cache full pages if you can.

• Cache fragments if you can’t.

• Always use a memory-based cache.

• memcached, Redis.



Cache results.

• QuerySets are serializable!

• Store them in an in-memory store.

• Redis is great for basic queues, etc.

• memcached if you only need a flat store.

• Remember thundering herds, etc.

• Always opt to return stale data.



Consider full prerendering.

• Build entire page and cache on disk.

• Let the web server serve it directly.

• Standard ngnix config will do this for you 
with appropriate path settings.

• Or let ngnix or Varnish do the caching.



Returning large files.

• Use X-Accel-Redirect or equivalent.

• Never hand the large file directly back 
through Django.

• Never. Write it to disk if you have to.

• Especially important if using back-end 
worker servers like gunicorn.



Middleware.

• Keep the middleware stack under control.

• Do you really need this to run on every 
request?

• Don’t use TransactionMiddleware…

• Control transactions using decorators.

• https://github.com/Xof/xact

https://github.com/Xof/xact
https://github.com/Xof/xact


Defer everything.

• Do not run asynchronous tasks in your 
view functions.

• Send mail, fetch other sites, etc.

• Queue those for later processing.

• Queue synchronous tasks if they are long-
running.

• Generate a “best-guess” result first.



The Model Layer



Model-building.

• Keep models simple and focused.

• Use natural keys (instead of AutoField) 
whenever possible.

• Don’t be afraid of foreign keys.

• Do not have frequently-updated singleton 
rows.



Fast vs slow data.

• A single logical object can have both “fast” 
and “slow” sections:

• Username vs last access time.

• Separate these into different tables.

• Avoids a large class of foreign key locking 
issues.



Result prefetching.

• QuerySets will fetch the entire database 
result set the first time they need a single 
row.

• … at least using psycopg2.

• Make sure database result sets are small.

• Do not rely on QuerySet slicing.



QuerySet caching.

• QuerySets retain their iterated-over results 
until released.

• This can be a significant memory sink.

• Release QuerySets once you are done with 
them.

• But if can you store the results for future 
use? Do it.



Transactions.

• Django’s default transaction handling isn’t 
good for high-load sites.

• Or interdependent models.

• TransactionMiddleware is better, but adds 
gratuitous transactions to read-only 
operations.

• That messages up pgPool II, etc.



Better transactions.

• Control transactions precisely around 
blocks of code that need it.

• autocommit = True

• Standard Django decorators

• https://github.com/Xof/xact

http://github/xof/xact/
http://github/xof/xact/


Using transactions.

• Keep transactions short and to the point.

• Like any good writing, start as late as you 
can, finish as early as you can.

• Never rely on Django to clean up 
transactions.

• Never wait for an asynchronous event with 
an open transaction.



More friendly advice.

• Do not iterate over large QuerySets…

• … especially while doing updates back to 
the database.

• Do joins in the database, not in Python.

• Don’t be afraid of writing custom SQL if 
that’s what it takes.



The Database



Databases are your friend.

• Keep queries short and stylized.

• Don’t let your users assemble arbitrary 
queries.

• It’s almost impossible to optimize for this 
case.

• Denormalization is not (always) evil.



Do not do this.

• Store sessions in the database.

• Store your task queue in the database.

• Especially if your task queue runner polls 
the database.

• (I’m looking at you, Celery.)

• Store high-volume data in an otherwise-
transactional database (clickstream, etc.)



Never lock.

1. Never issue an explicit database lock.

2. If you think you have to do it, see above.

3. If you are absolutely sure you have to do it, 
see point number 1.

• Explicit locking is a near-guarantee of an 
application architecture problem.



Connection poolers.

• Django has no built-in connection pooling.

• Connection time can be larger than the 
request processing time.

• pgbouncer vs pgPool II.

• https://github.com/gmcguire/django-db-pool

• Either session or transaction mode.



Database load balancing.

• If using PostgreSQL, use 9.x’s streaming 
replication.

• Ideally designed for web-type read vs write 
loads.

• How to route requests to the right 
servers?



Django database routing.

• Use Django database routing to distribute 
writes to the master, reads to the 
secondaries.

• If more than one secondary, use pgPool II 
or a TCP/IP-based load balancer 
(HAProxy).

• Remember replication lag issues.



pgbouncer

• Developed by Skype.

• Very fast and light-weight.

• Good for a single database or a self-
managed replication set.

• No failover, load balancing, or automatic 
query routing.



pgPool II

• More sophisticated, slower than pgbouncer.

• Does failover and query routing for a 
replication set.

• Does not interact well with standard 
Django transaction management.

• Use xact.



System 
Components



Full-text search.

• Solr and Elastic Search are very powerful.

• They can be significant time-sinks.

• Consider using the DB’s full-text search.

• PostgreSQL’s is very powerful.

• MySQL’s exists.

• Always precalculate and cache results.



In-memory databases

• memcached is a great flat in/out store.

• Redis is great for queuing and more 
advanced operations.

• Be sure to adjust timeouts in case of server 
failure.



Welcome to the cloud.

• Just about everyone develops or launches 
on a cloud provider now.

• Cloud services range from super-managed 
(Heroku) to here’s-your-machine (Linode).

• Carefully compare costs with what you get.

• You will need operations staff for a large 
site, no matter where you host.



Cloud good.

• Cloud provider keeps the lights on.

• Higher-touch providers configure and 
manage your system.

• You can spin up and spin down virtual hosts 
to manage front-end server demand.

• Database demand? Not so much, even 
with fast-sharding solutions.



Cloud bad.

• Highly unpredictable I/O performance.

• It varies from pretty bad to really, really 
horrible.

• Get lots of RAM.

• Cloud providers vary considerably in how 
seriously they take your particular virtual 
machine.



Push the button.

• Always automate deployments and 
provisioning.

• Puppet, Chef, Fabric…

• Pick one, learn it well, use it everywhere.

• The multiple components involved in high-
performance sites are a nightmare to 
administer by hand.



Monitor, monitor, monitor.

• Monitor everything.

• CPU usage.

• Memory usage.

• Disk space.

• Replication lag.

• New Relic if you can afford it.



Sharding



Sharding.

• Sharding, defined:

• Dividing the database layer over multiple 
servers, none of which have the entire set 
of data.

• Huge sites eventually need to shard.

• Sharding always affects application 
architecture.



Sharding strategies.

• Data-driven sharding.

• By customer, by geography, etc.

• “Anonymous” sharding.

• Customers whose ID ends in 9 go on this 
server.

• Common data distributed across all 
servers.



Challenges.

• Route queries to the right server.

• Doing aggregation across all servers.

• Distributing common data to all servers.

• Bringing up new shards.



Designing for sharding.

• Understand the growth model of each part 
of your data.

• Linear with user base.

• Exponential with user base.

• Linear over time.

• Constant.



Strategies.

• Linear with users: Isolate into specific 
Django applications for later migration to 
shards.

• Exponential with users: Eliminate if 
possible.

• Constant and linear with time: Segregate as 
future common data.



Other sharding fun.

• You will need to encode shard identity into 
keys.

• See Instagram’s blog for one strategy.

• Shard migration: Tied to distribution 
strategy.

• Pushing common data to all servers.

• Dealing with lag.



Consolidated data.

• Sharding requries data consolidation for 
reporting, etc.

• Strategies:

• A single consolidation that queries the 
shards (pull model).

• Shards that push their data to an 
aggreation server (push model).



To avoid.

• A single-point-of-failure “master” server.

• Just moves the load problem around.

• Inter-shard communication.

• Doing queries and joins across shards.

• Each shard should be a “mini-you.”



Design your application for sharding.

• It will make the overall application cleaner.

• You’ll learn a great deal more about your 
data model.

• When it comes time to shard, you will be a 
hero.



Summary!



I thought he’d never stop.

• Django can handle massive, server-melting 
loads.

• There’s no one trick; it’s a collection of 
small things and avoiding pitfalls.

• Focus on keeping your app lean.

• You can hardware your way out of 
(almost) all the rest.



Thank you!

Questions?



thebuild.com
pgexperts.com

@xof


