
JSON Home
Improvement

Christophe Pettus
PostgreSQL Experts, Inc.

SCALE 14x, January 2016

Greetings!

• Christophe Pettus

• CEO, PostgreSQL Experts, Inc.

• thebuild.com — personal blog.

• pgexperts.com — company website.

• Twitter @Xof

• christophe.pettus@pgexperts.com

mailto:christophe.pettus@pgexperts.com
mailto:christophe.pettus@pgexperts.com

JSON, what is?

• JavaScript Object Notation.

• A text format for serializing nested data
structures.

• Based on JavaScript’s declaration syntax.

• Intended to be passed directly into
JavaScript’s eval() function (don’t do this!)

JSON Primitive Types.

• Strings, always Unicode.

• De facto, always UTF-8 in flight.

• Numbers, integer and float.

• Boolean: true and false.

•null

JSON Structured Types.

• Arrays, using [].

• Hash / dictionaries / whatever you want to
call them (the JSON spec calls them
Objects), using { }

• { ‘string’ : value }

• Keys have to be strings; values can be
anything.

More complex types.

• Everything else is built out of those.

• There’s no type declaration mechanism.

• “Object” is unfortunate terminology.

• There’s no “schema” or similar validation
method.

• Everything is delegated to the application.

The good…

• It’s super-simple to generate and parse.

• The operational part of the spec is five
pages, with pretty pictures.

• It’s the de facto standard for data
interchange in web APIs.

• POST format is still used, but apps that
do that are wrong.

The bad…

• No higher-level standards.

• How is a datetime represented? I dunno,
you figure it out.

• Remember SQL injection attacks? Now we
have JSON injection attacks.

• Don’t use eval(). Just. Don’t.

And PostgreSQL has JSON!

• It’s a core type.

• Not a contrib/ or extension module.

• Introduced in 9.2.

• Enhanced in 9.3.

• And really enhanced in 9.4.

We liked JSON so much…

• … we created two types.

• json

• jsonb

• json is a pure text representation.

• jsonb is a parsed binary representation.

• Each can be casted to the other, of course.

json type.

• Stores the actual json text.

• Whitespace included.

• What you get out is what you put in.

• Checked for correctness, but not
otherwise processed.

Why use json?

• You are storing the json and never
processing it.

• You need to support two JSON “features”:

• Order-preserved fields in objects.

• Duplicate keys in objects.

• For some reason, you need the exact JSON
text back out.

Oh, and…

• jsonb wasn’t introduced until 9.4.

• So, if you are on 9.2-9.3, json is what you’ve
got.

• Otherwise, you want to use jsonb.

jsonb

• Parsed and encoded on the way in.

• Stored in a compact, parsed format.

• Considerably more operator and function
support.

• Has indexing support.

They’re just types.

• Fully transactional, can have multiple json/
jsonb fields in a single table, etc.

• Uses the TOAST mechanism.

• Can be up to 1GB.

• Can be a NULLable field if you like.

Basic Operators
(both json and jsonb)
• -> gets a JSON array element or object

field, as JSON.

• ->> gets the array element or object field
cast to TEXT.

• #> gets the array element or object field at
a path.

• #>> … cast to TEXT.

jsonb only!

• @> — Does the left-hand value contain
the right-hand value?

• <@ — Does the right-hand value contain
the left hand value?

Containment

• Containment work at the top level of the
json object only, and on full JSON
structures.

• It does not apply to individual keys.

• It does not apply to nested elements.

@>
postgres=# select '{"a": 1, "b": 2}'::jsonb @> '{"a": 1}'::jsonb;
 ?column?

 t
(1 row)

postgres=# select '[1, 2, 3]'::jsonb @> '[1, 3]'::jsonb;
 ?column?

 t
(1 row)

postgres=# select '{"a": {"b": 7, "c": 8}}'::jsonb @>
 '{"a": {"c": 8}}'::jsonb;
 ?column?

 t
(1 row)

but.

postgres=# select '{"a": {"b": 7}}'::jsonb @> '{"b": 7}'::jsonb;
 ?column?

 f
(1 row)

postgres=# select '{"a": 1, "b": 2}'::jsonb @> '"a"'::jsonb;
 ?column?

 f
(1 row)

?, ?|, ?&

• True if:

• ? — The key on the right-hand side
appears in the left-hand side.

• ?| ?& — Any of the array of keys on the
right-hand side appear on the left-hand
side.

• PostgreSQL array type, not JSON array.

?, ?|, ?&
postgres=# select '{"a": 7, "b": 4}'::jsonb ? 'a';
 ?column?

 t
(1 row)

postgres=# select '{"a": 7, "b": 4}'::jsonb ?& ARRAY['a', 'b'];
 ?column?

 t
(1 row)

postgres=# select '{"a": 7, "b": 4}'::jsonb ?| ARRAY['a', 'q'];
 ?column?

 t
(1 row)

but.
postgres=# select '{"a": {"b": 7, "c": 8}}'::jsonb ? 'b';
 ?column?

 f
(1 row)

postgres=# select '[1, 2, 3, 4]'::jsonb ?| ARRAY[1, 100];
ERROR: operator does not exist: jsonb ?| integer[]
LINE 1: select '[1, 2, 3, 4]'::jsonb ?| ARRAY[1, 100];
 ^
HINT: No operator matches the given name and argument type(s). You might
need to add explicit type casts.

postgres=# select '[1, 2, 3, 4]'::jsonb ?| '[1, 2]'::jsonb;
ERROR: operator does not exist: jsonb ?| jsonb
LINE 1: select '[1, 2, 3, 4]'::jsonb ?| '[1, 2]'::jsonb;
 ^
HINT: No operator matches the given name and argument type(s). You might
need to add explicit type casts.

JSON functions

• Lots and lots and lots.

• Create JSON from records, arrays, etc.

• Expand JSON into records, arrays, rowsets,
etc.

• Many have both json and jsonb versions.

Example: row_to_json

• Accepts an arbitrary row.

• Returns a json (not jsonb) object.

• For non-string/int/NULL types, uses the
output function to create a string.

• Properly handles composite/array types.

Behold!

xof=# select row_to_json(rel.*) from rel where array_length(tags, 1) > 2 order
by id limit 3;
 row_to_json
--

 {"id":636572,"first_name":"OLENE","last_name":"OGRAM","tags":
["female","square","violet"]}
 {"id":636744,"first_name":"SHAYNE","last_name":"GALPIN","tags":
["female","square","silver","aquamarine","green","octogon"]}
 {"id":636769,"first_name":"YASMIN","last_name":"AKEN","tags":
["female","red","green"]}
(3 rows)

But seriously…

• … can be used in a trigger to append to an
audit table regardless of the schema.

• Extremely useful for shared triggers.

Example: jsonb_each_text

• Takes a jsonb object, and returns a rowset
of key/value pairs.

• Returns each as text object.

• Can be used to write the world’s most
expensive EAV query!

Behold!

xof=# WITH s AS (
xof(# SELECT row_to_json(rel.*)::jsonb AS j FROM rel ORDER BY id LIMIT 3
xof(#) SELECT (s.j->>'id')::bigint AS entity, key as attribute, value FROM s,
LATERAL jsonb_each_text(s.j) WHERE key <> 'id';
 entity | attribute | value
--------+------------+------------
 636526 | tags | ["female"]
 636526 | last_name | EILTS
 636526 | first_name | REGENA
 636527 | tags | ["male"]
 636527 | last_name | POTO
 636527 | first_name | ANTONIO
 636528 | tags | ["female"]
 636528 | last_name | LUFSEY
 636528 | first_name | ROXY
(9 rows)

But that would
be wrong.

But seriously…

• … it can be used to expand jsonb into
relational data for JOINs and the like.

• Often more efficient than using the
extraction operators.

Indexing.

Indexing json

• The textual json type has no inherent
indexing (that you’d ever use).

• Can do an expression index on extracted
values…

• … but that requires knowing exactly which
fields / elements you are going to query on.

jsonb indexing.

• jsonb has GIN indexing.

• Default type supports queries with the
@>, ?, ?& and ?| operators.

• The query must be against the top-level
object for the index to be useful.

• Can query nested objects, but only in paths
rooted at the top level.

jsonb_path_ops

• Optional GIN index type for jsonb.

• Only supports @>.

• Hashes paths for each item, rather than just
storing the key itself.

• Faster for @> operations with nesting.

jdoc @> '{"tags": ["qui"]}'

• Both index types support this.

• jsonb_ops (the default) will seach for
everything that has “tags”, has “qui”, AND
them, and then do a recheck for the path
structure.

• jsonb_path_ops will go directly to entries
for that path.

Which to use?

• If you just need @>, jsonb_path_ops will
probably be faster.

• If you need the other supported
operators, you need jsonb_ops.

New in PostgreSQL 9.5!

• jsonb_pretty() — Pretty-prints the jsonb
structure.

• jsonb || jsonb — Merges two top-level
objects (keys from the right-hand side win).

• jsonb - (minus) — Remove a key or array
element.

jsonb_set

• Used to be jsonb_replace.

• Replaces items in the JSON structure
based on a path.

• By default, will create missing items as
required (optionally, can throw an error
instead).

postgres=# SELECT jsonb_set('{"a":
"x"}'::jsonb, '{a}', '"y"');
 jsonb_set

 {"a": "y"}
(1 row)

postgres=# SELECT jsonb_set('[{"a": [1, 2,
3]}]'::jsonb, '{0,a,-1}', '"x"'::jsonb);
 jsonb_set

 [{"a": [1, 2, "x"]}]
(1 row)

So, what can we
do with this?

1: Auditing!

• The problem: Want to keep a record of
every change to a set of tables.

• But every table has its own schema.

• Create one audit table per table being
tracked?

• Lots of tables, error-prone, have to change
schemas two places...

Use JSON!

• Can create a single audit table that handles
changes for all child tables.

• Can create a single trigger function that can
be attached to any table that needs
auditing.

Audit Table

CREATE TABLE audit (
 ts TIMESTAMP WITH TIME ZONE NOT NULL DEFAULT now(),
 schema_name VARCHAR NOT NULL,
 table_name VARCHAR NOT NULL,
 operation VARCHAR NOT NULL,
 row_contents JSONB
);

Trigger.
CREATE OR REPLACE FUNCTION audit() RETURNS TRIGGER AS
$audit$
DECLARE
 record_to_log JSONB;
BEGIN
 IF TG_OP = 'DELETE' THEN
 record_to_log := row_to_json(OLD.*)::JSONB;
 ELSE
 record_to_log := row_to_json(NEW.*)::JSONB;
 END IF;

 INSERT INTO audit(schema_name, table_name, operation, row_contents)
 VALUES(TG_TABLE_SCHEMA, TG_TABLE_NAME, TG_OP, record_to_log);

 RETURN NULL;

END;
$audit$
 LANGUAGE plpgsql;

Behold!

xof=# INSERT INTO x(i, f) VALUES(12, 7.5);
INSERT 0 1
xof=# INSERT INTO y(q) VALUES(ARRAY[1,2,3,4]);
INSERT 0 1
xof=# TABLE audit;
 ts | schema_name | table_name | operation |
row_contents
-------------------------------+-------------+------------+-----------
+--------------------------------
 2016-01-20 15:06:11.408046-08 | public | x | INSERT |
{"f": 7.5, "i": "12", "pk": 4}
 2016-01-20 15:06:22.929203-08 | public | y | INSERT |
{"q": [1, 2, 3, 4], "pk": 5}
(2 rows)

And you can dedup.

CREATE OR REPLACE FUNCTION json_diff(l JSONB, r JSONB) RETURNS JSONB AS
$json_diff$
 SELECT jsonb_object_agg(a.key, a.value) FROM
 (SELECT key, value FROM jsonb_each(l)) a LEFT OUTER JOIN
 (SELECT key, value FROM jsonb_each(r)) b ON a.key = b.key
 WHERE a.value != b.value OR b.key IS NULL;
$json_diff$
 LANGUAGE sql;

Behold!
xof=# select json_diff('{"a": 1, "b": 2}'::jsonb, '{"a": 1, "b":
1}'::jsonb);
 json_diff

 {"b": 2}
(1 row)

xof=# select json_diff('{"a": 1, "b": 2}'::jsonb, '{"a": 2, "b":
1}'::jsonb);
 json_diff

 {"a": 1, "b": 2}
(1 row)

xof=# select json_diff('{"a": 1}'::jsonb, '{"a": 1}'::jsonb) is null;
 ?column?

 t
(1 row)

The Good.

• A single trigger function and schema that
contains everything.

• Schema changes to the audited tables don’t
require any further changes.

• The JSONB object can be indexed for
faster retrieval.

The Bad.

• Bigger and slower than relational data.

• Joins can be pretty slow.

• Not great for historical tracking that is in
common use in the application.

• The single table can get huge: Need a
partition / archiving strategy.

2: Post-Deployment Schema
Changes
• The problem: A packaged application.

• Each customer runs their own instance (an
appliance, for example).

• The application allows users to customize
the schema.

• Additional fields, such as “size” for
clothing.

EAV tables!

• Option 1: Use an Entity-Attribute-Value
table.

• The table can get quite large.

• Not very pleasant to join on.

ALTER TABLE

• We could modify the schema on the fly.

• Application needs to understand the
additional fields.

• Can make migrations for new versions of
application complicated.

• Each installation now becomes slightly
unique.

... or JSON!

• Use a JSON field to hold customizations.

• Can be indexed in reasonable ways.

• Retrieved as part of the record retrieval; no
join required.

• Potential space savings from compression
for larger objects.

3: Securing Data.

• The problem: You have sensitive data (PCI,
HIPAA, passwords) in the database.

• You want to encrypt it.

• So, what do to?

Encrypt Everything!

• Full disk encryption! Problem solved!

• Uh, no. FDE is useless.

• Encrypt in app or PostgreSQL.

• Breaks indexing.

• Most fields don’t actually need to be
encrypted at rest.

Encrypt Some, Not Others.

• Encrypt only those fields that need
encryption.

• Provide hashed or similar external keys for
quick lookups.

• But what if there are several separate fields
that need encryption at rest?

• You could separately encrypt them, or...

Use JSON!

• Stuff all the sensitive info into a JSON
object.

• Encrypt that.

• Use JSON primitives in PostgreSQL if you
are encrypting at the database level, or...

• Just return the blob to the app and decrypt
it there (yes, this is cheating).

4: Structured Object
Storage.
• Sometimes, you just want to store an

object.

• Highly variable “schema”.

• Lots and lots and lots of optional fields.

• Hierarchical data that would be painful to
decompose.

Use JSON!

• That’s what it’s there for.

• Faster than XML.

• More powerful than hstore.

• And highly searchable and indexable.

• In fact, we beat MongoDB in most real-
life applications.

5: API Logging.

• Most? Many? Almost all new? APIs are
JSON-based.

• It’s usually very valuable to log each raw API
request for debugging and forensic
purposes.

• So…

Use JSON!

• You might want to use JSON and not
JSONB in this case.

• Smaller, faster to insert.

• But not indexable.

• Consider a separate PostgreSQL instance
to avoid bogging down a transactional
system.

In conclusion…

• The JSON functionality of PostgreSQL is an
excellent complement to the relational
features.

• Take full advantage of it! It’s a stable, highly
performant part of PostgreSQL.

• Use relational data for most things, but a
little bit of JSON can really help.

Thank you!

Questions?

• thebuild.com — personal blog.

• pgexperts.com — company website.

• Twitter @Xof

• christophe.pettus@pgexperts.com

mailto:christophe.pettus@pgexperts.com
mailto:christophe.pettus@pgexperts.com

