
The Worst Day of
Your Life



The day started like any other.



We I had one job.

• Migrate a production database server…

• … from one Amazon instance to another…

• … with minimum downtime …

• … using streaming replication.

• PostgreSQL 9.3.1

• at that time, the latest version.



P1 S1



P1 S1



P1 P2



P1 P2

Profit!



What could go wrong?



36 hours later…



“Huh. That’s weird.”



Oh, no.

• Rows in P1 were missing in P2.

• Deleted rows in P1 were still on P2.

• Rows in P1 were duplicated in P2.

• … in violation of primary key constraints.

• But no one told the indexes.



It was surreal.

• Multiple versions of the same row, before 
and after modification by a committed 
transaction.

• Newly-created rows were not pushed over 
onto the secondary.



Oh, we found it!

• The tables had a last_modified 
timestamp…

• … and the bad rows clustered right around 
the cutover time.

• … and queries were running!

• That must be it! Active queries at the 
cutover time!



Spoiler Alert!

This makes no sense.



No problem!

• Couldn’t roll back to P1, but we could fix 
the database.

• Did a pg_dump / pg_restore.

• Patched up everything very, very tediously.

• Brought it back up.



We’re so smart it hurts.

• Problem solved!

• Brought up a new secondary…

• … after making sure there were no 
queries running.

• Everything looks great.





Declare Victory!



6 hours later…



“Hey, Christophe…”



Oh, no, not again.

• The problem reoccurred on the new 
secondary.

• Same problem.

• Same symptoms.

• Even though the obvious clear no-question 
must-be-it cause was gone.



So, what happened?

• It was, in fact, a PostgreSQL bug in 9.3.1 
(and 9.2.5, and 9.1.10, and 9.0.14).

• Downgraded to 9.3.0 until 9.3.2 came out.

• Applied the 9.3.2 upgrade without incident.



We I did everything wrong.

• Didn’t keep the parts.

• Didn’t work up the stack.

• Didn’t methodically track down the error.

• Ruled out a PostgreSQL bug.



By the way…

• If you are running 9.3.1 or 9.2.5 or 9.1.10 
or 9.0.14…

• … and using streaming replication …

• … upgrade right now. This instant. I’ll wait.

• OK, everyone back?



When disaster 
strikes.



Bad things are happening.

• PostgreSQL is crashing repeatedly.

• Queries returning bad results.

• Scary-looking error messages in the log.

• Backends are running for extended periods 
without an obvious reason.



The Stages of a Crisis.

• Denial

• Anger

• Bargaining

• Depression

• Actually fixing the problem already.



Denial.

• It must be something unrelated to 
PostgreSQL.

• PostgreSQL doesn’t have bugs.

• Oh, you were running queries while the 
cutover happened?



Anger.

• YOU SHOULDN’T HAVE DONE THAT!

• WHY DIDN’T YOU TELL ME!

• YOU SAID THE APPLICATION WAS 
QUIESCENT!



Bargaining.

• “OK, we’ll just repair the database from the 
missing rows.”

• “A pg_dump/pg_restore will fix 
everything.”

• “It was probably a transient EBS failure. You 
know EBS. EBS totally sucks. It’s all EBS’ 
fault.”



Depression.

• We.

• are.

• all.

• going.

• to.

• die.



Fix the problem.

• Best to skip straight to this stage.

• Move slowly.

• Keep good notes.

• Don’t panic.



The First Step.





Crisis
=

Problem + Panic



First, do no harm.

• If you’re down, you’re down. Take a deep 
breath, and move cautiously.

• Minimize communication channels.

• Don’t delete anything unless you know that 
is a solution to the problem.

• Like, you’re out of disk and it’s full of text 
logs.



For example…

• “The disk filled up, so we deleted the log 
files. Now, PostgreSQL won’t start.”

• “What did you delete?”

• “Everything in the log directory.”

• “Um, which log directory?”



“pg_xlog”



“Is that bad?”





“Yes.”



Keep the parts.

• If you possibly can, make a copy of the 
database before touching anything.

• If you can’t, document meticulously what 
you change.



Some crucial points.

• There are tens if not hundreds of 
thousands of PostgreSQL installations.

• PostgreSQL works very, very well.

• PostgreSQL does have bugs, but…

• … rule out everything else first.



Work up the stack.

• Are there errors in demsg indicating a 
hardware or OS problem?

• Is the OOM killer terminating backends?

• Disk I/O errors?

• Can you cp -R the data directory to
/dev/null?



Frequent problems.

• Disk I/O subsystem not honoring fsync.

• SAN boxes are notorious for this.

• Memory corruption problems.

• RAM errors are remarkably common.



Strange little issues.

• Remember to let pg_start_backup() 
complete before taking a snapshot.

• Use rsync and not scp to move WAL files 
around.

• Keep the WAL files, not just the snapshot 
backup.



Dealing with crashes.

• Eliminate system-level causes.

• Isolate the crashing behavior (what table? 
what query?).

• Other processes on the same machine 
showing unusual behavior?



But what if…

• … you don’t have a clean backup?

• … you need to get the system patched and 
back up?

• … you can avoid repeating the problem?

• … you have nerves of steel?



Great and 
Desperate Cures.



Before you push that 
button.
• It’s always better to roll back to a known-

good system.

• These are no substitute for a solid backup 
and disaster recovery strategy.

• No user-serviceable parts inside.

• Proceed at your own risk.



There are no 
recipes.



Known unknown knowns.

• All corruption is, by its nature, a one-off 
situation.

• Be sure to determine the extent of it 
before continuing.

• Be sure you can step backwards!



REMEMBER.



WORK ON
A COPY.



Safe(-ish) stuff.

• Index corruption is probably the most 
common kind of database issue.

• Indexes have much more internal 
structure than the heap.

• Drop indexes that are involved in bad-
result queries, or scary error messages.



Finding the data

• All data is located inside base/

• Every relation has a relfilenode

• Find it in pg_class

• base/<database oid>/<relfilenode>

• .1, .2, .3 for relations over 1GB.



Heap structure.

• Divided into 8KB blocks.

• Each block has a variable number of tuples 
on it.

• Every row has a ctid

• (block, tuple-in-block)

• select ctid from my_table;



Fixing heap damage.

• set zero_damaged_pages = true;

• Automatically zeros a page that 
PostgreSQL thinks is invalid.

• PostgreSQL interprets an all-zero page as 
empty.

• Drop indexes first.



Fixing really really bad heap 
damage.
• Backend crashes when it touches a 

particular row or set of rows.

• Use dd to zero those pages.

• Double-check your math.

• Drop indexes first.



clog problems

• The clog keeps track of the state of 
“visible” transactions.

• Missing, damaged, accidentally deleted clog 
files can be recreated as all-zero.

• This can cause… interesting data 
situations.

• Be aware of irrational clog values.



clog follies.

• The clog keeps track of transaction state.

• “Repairing” it can cause rolled back 
transactions to reappear, and other exciting 
events.

• Be prepared to do further cleanup if you 
touch the clog.



pg_dump / pg_restore

• Forces database-level consistency.

• Application-level consistency is another 
matter.

• Fix serious data corruption, do a dump / 
restore onto a clean host.



COPY

• If you can’t get a clean dump, consider 
manually COPYing out tables.

• Can sub-select around corruption.

• Do a schema-only dump to create the new, 
empty receiving database.



System catalog corruption.

• The heap cannot be correctly read without 
a valid system catalog.

• You can modify the system catalogs directly 
to patch isolated errors.

• If the system catalog is deeply corrupted, 
you may need to scavage data.



Tools

• pageinspect — contrib/ module to inspect 
low-level page information.

• pg_controldata — View control data for 
the cluster.

• pg_resetxlog — Reset WAL and control 
information.



Expecting the 
Unexpected.



Planning for disaster.

• If you run a PostgreSQL installation of any 
size, something like this will happen to you.

• Sooner or later.

• The best way to avoid turning a problem 
into a crisis is to be prepared for it.



Test. Your. Backups.

• A backup that is not tested is not a backup.

• Give them to developers.

• Use them for analytics.

• But make sure that the restore steps are 
automated and foolproof…

• … because you probably will have to do 
it on no sleep.



The right kind of leaves 
backups.
• Do PITR backups.

• Keep a reasonable number of backups and 
associated WAL segments.

• S3 is cheap.

• Corruption can lurk for an extended 
period before it’s found.



PostgreSQL hygiene.

• fsync = on

• Make sure this really happens.

• full_page_writes = on 

• Very few file systems guard against torn 
pages.

• Don’t kill -9 anything.



Stay up-to-date.

• Deploy minor versions as they roll out.

• Yes, the bug at the start of the 
presentation was introduced in a minor 
upgrade.

• That’s extremely uncommon.

• Plan an upgrade strategy so you are not 
caught by a major version going EOL.



Turn on checksums.

• 9.3+ initdb option

• Flags corruption immediately.

• Does not fix the damage, though.

• Use it unless you have a checksuming file 
system.

• Which you probably don’t.



Test, test, test.

• Have automated test tools that do 
application-level database scans.

• Tuples get lonely. Visit them once in a while.

• Don’t wait for a VACUUM FREEZE.

• Make it part of your migration / upgrade 
strategy.



Let’s play a game.

• Your main data center burns to the ground.

• How do you get the database back up?

• How much data have you lost?

• For “data center,” read AWS region.



Write it down.

• Have a runbook for these situations.

• You’ll often have to go off-script…

• … but it is great to have a list of things to 
try, and steps to take.

• Remember, you’ll be doing this…





… on no sleep.



Working with the 
Community.



“For you, the day Bison 
graced your village was 
the most important day 
of your life.

“But for me, it was Tuesday.”



The bug you found is the 
worst thing in your world.
• But if it was the worst thing in the 

developer’s world, they’d have pushed a 
patch already.

• No one is paid just to fix PostgreSQL bugs.

• Everyone who can hack on PostgreSQL 
internals is very, very busy.



Be thorough…

• Develop a test case, if you can.

• Document everything, even if you think it is 
not important.

• If the data is sensitive, come up with an 
anonymization plan.



File a bug.

• pgsql-bugs@postgresql.org

• http://www.postgresql.org/support/
submitbug/

• Read the guidelines!

mailto:pgsql-bugs@postgresql.org
mailto:pgsql-bugs@postgresql.org
http://www.postgresql.org/support/submitbug/
http://www.postgresql.org/support/submitbug/
http://www.postgresql.org/support/submitbug/
http://www.postgresql.org/support/submitbug/


If the bug is critical…

• … critical defined as data corruption or 
repeatable server failure…

• … consider bringing it up on -hackers.

• Remember, everyone is busy with their 
own crises.



Crashing / freezing bugs.

• Install the -dbg packages.

• If you are getting core dumps, get stack 
traces out of them.

• Use strace to find out where things are 
hung up.



Be persistent, but polite.

• Monitor any threads you start.

• Answer questions promptly and thoroughly.

• Don’t badger the developers! They don’t 
work for you!

• Well-documented and repeatable critical 
bugs get fixed pretty fast.



Consider spending money.

• Hire a company to fix the problem.

• I might have a recommendation.

• If you think that PostgreSQL consulting is 
expensive…

• … it’s not expensive.



This is expensive.



Thank you!



Christophe Pettus
PostgreSQL Experts, Inc.

pgexperts.com

thebuild.com

christophe.pettus@pgexperts.com

Twitter @xof

http://pgexperts.com
http://pgexperts.com

