
Breaking PostgreSQL at Scale.

Christophe Pettus 
PostgreSQL Experts 

FOSDEM 2019



Christophe Pettus 
CEO, PostgreSQL Experts, Inc. 

 
christophe.pettus@pgexperts.com 

thebuild.com 

twitter @xof

mailto:christophe.pettus@pgexperts.com
http://thebuild.com


So, what is this?
• PostgreSQL can handle databases of any size.


• Largest community-PostgreSQL DB I’ve worked on 
was multiple petabytes.


• But how you handle PostgreSQL changes as databases 
get larger.


• What works for a 1GB database doesn’t for a 10TB 
database.


• Let’s talk about that!



thebuild.com



Database Sizes



Ten Gigabytes.



Your New Database!
• It’s very hard to go wrong with small databases on 

PostgreSQL.


• Nearly everything will run fast…


• … even “pathological” joins, unless then are fully N^2.


• The stock postgresql.conf will work.



How much memory?
• If you can’t fit your database in memory…


• … reconsider your life choices.


• Even small “micro” instances can handle a database this 
size.


• The entire database can probably fit in memory.


• Even sequential scans will zip right along.



Backups.
• Just use pg_dump.


• A 5GB pg_dump takes 90 seconds on my laptop.


• No need for anything more sophisticated.


• Stick the backup files in cloud storage (S3, B2), and 
you’re done.



High Availability.
• A primary and a secondary.


• Direct streaming, or basic WAL archiving.


• Manual failover? It’s cheap and easy.



Tuning.
• If you insist.


• The usual memory-related parameters.


• A couple of specialized parameters for all-in-memory 
databases.


• But at this stage, just keep it simple.



Tuning.
seq_page_cost = 0.1 
random_page_cost = 0.1 
cpu_tuple_cost = 0.03 
shared_buffers = 25% of memory 
work_mem = 16MB 
maintenance_work_mem = 128MB



Tuning.
log_destination = 'csvlog' 
logging_collector = on 
log_directory = '/var/log/postgresql' 
log_filename = 'postgresql-%Y%m%d-%H%M%S.log' 
log_rotation_size = 1GB 
log_rotation_age = 1d 
log_min_duration_statement = 250ms 
log_checkpoints = on 
log_connections = on 
log_disconnections = on 
log_lock_waits = on 
log_statement = 'ddl' 
log_temp_files = 0 
log_autovacuum_min_duration = 1000 



Upgrades.
• pg_dump/pg_restore.


• You’re done.


• But do it!


• The farther you fall behind on major versions, the harder it 
becomes.


• Get into the habit of planning your upgrade strategy.



100 Gigabytes.



Not huge, but…
• … the database is starting to get bigger than will fit in 

memory.


• Queries might starting performing poorly.


• pg_dump backups take too long to take or restore.



How much memory?
• How much memory does a PostgreSQL database need?


• If you can fit the whole thing in memory, great.


• Otherwise, try to fit at least the top 1-3 largest indexes.


• Ideally, effective_cache_size > largest index.


• If not, more memory is always better, but…


• … more memory does not help write performance.



Backups.
• pg_dump won’t cut it anymore.


• Time for PITR backups!


• pgBackRest is the new hotness.


• WAL-E is the old warhorse.


• Can roll your own (if you must).



PITAR
• Takes an entire filesystem copy, plus WAL archiving.


• More frequent filesystem copies means faster restore…


• … at the cost of doing the large copy.


• Other benefits: Can restore to a point in time, can use 
backup to prime secondary instances.



Tuning.
seq_page_cost = 0.5-1.0 
random_page_cost = 0.5-2.0 
shared_buffers = 25% of memory 
maintenance_work_mem = 512MB-2GB



work_mem
• Base work_mem on actual temporary files being created 

in the logs.


• Set to 2-3x the largest temporary file.


• If those are huge? Ideally, fix the query that is creating 
them.


• If you can’t, accept it for low-frequency queries, or…


• … start thinking about more memory.



Load balancing.
• Consider moving read traffic to streaming secondaries.


• Be aware that replication lag is non-zero.


• Handle the traffic balancing in the app if you can.


• If you can’t, pgpool is there for you (although it’s quirky).



Monitoring.
• Time for real monitoring!


• At a minimum, process logs through pgbadger.


• pg_stat_statements is very valuable.


• pganalyze is a handy external tool.


• New Relic, Datadog, etc., etc. all have PostgreSQL 
plugins.



Queries.
• Check pgbadger / pg_stat_statements regularly for slower 

queries.


• Missing indexes will start becoming very apparent here.


• Create as required, but…


• … don’t just start slapping indexes on everything!


• Base index creation on specific query needs.



High Availability.
• Probably don’t want to fix it manually anymore.


• Look at tooling for failover:


• pgpool2


• Patroni


• Hosted solutions (Amazon RDS, etc.)



Upgrades.
• pgupgrade.


• In-place, low downtime.


• Very reliable and well-tested.


• Some extensions are not a comfortable fit, especially for 
large major version jumps.


• We’re looking at you, PostGIS.



One Terabyte.



Things Get Real.
• Just can’t get enough memory anymore.


• Queries are starting to fall apart more regularly.


• Running out of read capacity.


• Doing full PITR backups is taking too long.



Resources
• As much memory as you can afford.


• Data warehouses need much more than transactional 
databases.


• I/O throughput becomes much more important.


• Consider moving to fast local storage from slower SAN-
based solutions (such as EBS, etc.).



Backups
• Start doing incremental backups.


• pgBackRest does them out of the box.


• You can roll your own with rsync, but…


• … this is very much extra for experts!



Checkpoints/WAL.
min_wal_size = 2GB+ 
max_wal_size = 8GB+ 
checkpoint_timeout = 15min 
checkpoint_completion_target = 0.9 
wal_compression = on 



Restrain yourself.
• Keep shared_buffers to 16-32GB.


• Larger will increase checkpoint activity without much 
actual performance benefit.


• Don’t go crazy with maintenance_work_mem.


• If most indexes are larger than 2GB, it is often better to 
decrease it to 256-512MB.



Load balancing.
• Read replicas become very important.


• Distinguish between the failover candidate (that stays 
close to the primary) and read replicas (that can accept 
delays due to queries).


• Have scripted / config-as-code ways of spinning up new 
secondaries.



Off-Load Services.
• Move analytic queries off of the primary database.


• Consider creating a logical replica for analytics and 
data warehousing.


• Move job queues and similar high-update-rate, low-
retention-period data items out of the database and into 
other datastores (Redis, etc.).



VACUUM.
• Vacuum can start taking a long time here.


• Only increase autovacuum_workers if you have a large 
number of database tables (500+).


• Let vacuum jobs complete!


• Be careful with long-running transactions.


• Consider automated “manual” vacuums for tables that 
are very high update rate.



VACUUM.
• If autovacuum is taking too long, consider making it more 

“aggressive” by reducing 
autovacuum_vacuum_cost_delay.


• If autovacuum is causing capacity issues, consider 
increasing autovacuum_vacuum_cost_delay.


• But let autovacuum run! You can get yourself into serious 
(like, database-shutdown-serious) trouble without it.



Indexes
• Indexes are getting pretty huge now.


• Consider partial indexes for specific queries.


• Analyze which indexes are really being used, and drop 
those that aren’t necessary (pg_stat_user_indexes is your 
friend here).



Queries.
• Queries can start becoming problematic here.


• Even the “best” query can take a long time to run against 
the much larger dataset.


• “Index Scan” queries turning into “Bitmap Index Scan / 
Bitmap Heap Scan” queries, and taking much longer.



Partitioning.
• Look for tables than can benefit from partitioning.


• Time-based, hash-based, etc.


• PostgreSQL 10+ has greatly improved partitioning 
functionality.


• Just be sure that the table has a strong partitioning key.



Parallel Query Execution.
• Increase the number of query workers, and the per-query 

parallelism.


• Very powerful for queries that handle large result sets.


• Make sure your I/O capacity can keep up!



Statistics Targets.
• For fields with a large number of values, the default 

statistic target can be too low.


• Especially for longer values.


• Strings, UUIDs, etc.


• Look for queries where a highly specific query is planned 
to return a large number of rows.


• Don’t go crazy! Increasing statistics targets slows 
ANALYZE time. 



Alternative Indexes.
• Some fields are not good matches for B-tree indexes.


• Long strings, range types, etc.


• Use indexes appropriate for the type.


• Hash indexes are very good for strings, especially those 
with most of the entropy later in the string (URLs, etc.).



Upgrades.
• pgupgrade still works fine.


• Time is proportional to the number of database objects, 
not database size.


• If downtime is unacceptable, logical replication / 
rehoming works as well.


• Be sure to plan for major version upgrades…


• … lest you be the 1PB database still on 8.3.



Ten Terabytes.



Big.
• Congratulations! You’re definitely in the big leagues now.


• Some hard decisions will need to be made.



Backups
• Anything involving copying is going to start being very 

slow and impractical.


• Consider moving to file system snapshots for the base 
backup in PITR.


• ZFS, SAN-based snapshots, etc.



Tablespaces.
• Tablespaces are a pain.


• Only use them if you have a specific reason.


• Fast/slow storage, reaching limits of a single volume, etc.


• Understand that they will complicated backups and 
replication.



Index Bloat.
• Index bloat can be a significant problem at this size.


• Space in indexes is harder to reclaim that space in the 
heap.


• Reindex / replace scripts can be helpful here.



Index Contention.
• High write rates against a UNIQUE index can create 

locking issues.


• Especially with closely clustered keys, such as SERIAL, 
Snowflake-generated primary keys, etc.


• If generated keys are guaranteed to be unique, consider 
dropping the UNIQUE constraint.


• Consider using non-sequential keys, such as UUIDs.



Write Capacity.
• Write capacity might start being constrained.


• Time to consider sharding.


• Many options: Citus, Postgres-XL, custom application-
based sharding.


• Also can significantly accelerate large-dataset reads.


• Be prepared for the increase in administration complexity.



Huge.



Wow.
• PostgreSQL can handle really huge databases.


• But you need to be prepared to make some complex 
choices.


• Each large installation is unique, but…



What’s the working set?
• If most of the data is just archival, performance will be 

more manageable.


• But if it’s archival, why not archive it?


• Separate the system into a transactional system and a 
data warehouse.


• Logical replication is great for this.



Large-Scale Sharding.
• Instead of one gigantic database, or closely connected 

nodes.


• Geographic, enterprise, etc.


• Multi-master tools, if necessary, to handle synchonization.


• Bucardo, 2nd Quadrant’s BDR.



Data Federation.
• Move archival data to alternative datastores.


• Or even into cold storage if it’s not required for 
analytics.


• Use Foreign Data Wrappers to federate multiple 
databases.


• Or just run big/small databases on the same PostgreSQL 
instance.



In Sum.



PostgreSQL is amazing.
• It can handle everything from your laptop to world-

spanning database environments.


• It will grow with you.


• Don’t over-tool your installation at each phase, but…


• … keep one eye out for how to handle the next step.



Thank you!



Questions?



thebuild.com

http://thebuild.com


Christophe Pettus 
CEO, PostgreSQL Experts, Inc. 

 
christophe.pettus@pgexperts.com 

thebuild.com 

twitter @xof

mailto:christophe.pettus@pgexperts.com
http://thebuild.com

