Christophe Pettus
PostgreSQL Experts
Logical Decoding & Backup Conference Europe 2014

® Christophe Pettus
® Consultant with PostgreSQL Experts, Inc.
® Working with PostgreSQL since 1997.

® ... right up until you need them.

® ... at which point, they become beyond
price.

® Consider the “would | have paid this” rule.

® Right now, with all my data lost, would |
pay the backup cost to get it back?

® ... unless the data can be reasonably
recreated from other sources.

® Most PostgreSQL databases aren’t in that
situation.

® So, let’s talk about how to implement this.

® Anything.
® The hardware.
® The software.
® Application, PostgreSQL bugs.
® The network.

® The place you've stored your backups.

® Right now, what happened if the data
center holding your database burned

down!
® While you were at the conference.
® |n a no-mobile-reception zone?

® The goal is to say, ‘Oh, that? We know
exactly what to do.We know it works.”

® A single disk.
e A RAID array.
® Bad firmware upgrades.
® The whole machine.
® [he whole data center.

® A whole region of data centers.

® SANs? You are one bad firmware revision
from having a €25,000 end table.

® Disks purchased at the same time can have
correlated failures.Very bad in a RAID|0.

® SSDs are not significantly more reliable
than spinning disks. Nice and fast, though!

® Bad migrations.
® Dropping a needed field.

® “Cleanup” operations that expire needed
data.

® Bugs that destroy data.

“Oh, was | logged into production?”
rm -rf *
Botched upgrades.

Corrupted pushes of configuration data.

Your application was hacked.

You checked in a password or APl key into
Github without realizing it.

You fall a bit behind on reading security
advisories.

An appliance is vulnerable even if you
aren't.

Primary in AWS.

Secondary in the same region, different AZ.

Another set of secondaries in a different
region.

Everything backed up devotedly to S3.

Code Spaces Status

Code Spaces will not be able to operate beyond this point, the cost of
expected cost of refunding customers who have been left without the :
a irreversible position both financially and in terms of on going credibi

As such at this point in time we have no alternative but to cease tradir
affected customers in exporting any remaining data they have left with

All that we can say at this point is how sorry we are to both our ci
living at Code Spaces for the chain of events that lead us here.

In order to get any remaining data exported please email us at suppor
and we will endeavour to process the request as soon as possible.

On behalf of everyone at Code Spaces, please accept our sincer«

® Decide on a backup strategy.

® Complexity, infrastructure support,
storage costs, recovery time.

® Document the backup and restore
procedures.

® Jest, test, test.

pg_dump.
File system backups + WAL archiving.

Streaming replication.

Logical replication.

® Takes a consistent, logical snapshot of the
database.

® On-line backup: Low impact on the running
system.

® |/O load, no schema changes.

® Highly selective backups: Pick databases,
schemas, tables, etc...

Very simple to understand and script.

Lots of control over exactly what to back
up.

Compact backups, as indexes are excluded.

Parallel backups are fast (for a copy
operation).

Works across major versions.

® |t’s still a full database copy.
® A snapshot as of the start of the backup.

® Anything after that would be lost on a
recovery.

® Restores can take 3-5x as long as backups,
due to index recreation.

® Since it reads every row being backed up, it
can find lurking corruption.

® pg dump to /dev/null

® A restore from a pg_dump is a new, clean
disk image.

® Use custom format for dumps.

® Use parallel restore to speed up the
process.

® Always do an ANALYZE afterwards!

® Database statistics are not saved in
pg _dump’s format.

® Small databases.

® Small = pg_dump completes in
reasonable time.

® Databases that can lose important work
since the last pg_dump.

® As a compact snapshot for long-term
archiving or auditing.

File system backups +
WAL archiving.

® |n PostgreSQL since 8.2.

® Uses file system tools and WAL archiving
to produce a backup.

pg_start backup()
Copy contents of $PGDATA.

Keep all WAL files generated while copy is
going on.

pg _stop backup()
File system copy + WALs is your backup.

The file system snapshot is not consistent
or valid.

The WAL records are required to make it
consistent.

You need to save every WAL segment
created during the backup.

Without them, the backup is useless.

Backup process does not pollute shared
buffers.

Potential of using interesting ways of taking
the file system backup.

Backup can be used to prime a secondary
for streaming replication.

Point-in-time recovery.

® VWhen a WAL archive backup is restored,
the WAL records are “replayed.”

® They can be replayed all the way to the
end, or to an intermediate point.

® |f WAL archiving continued after the backup
end, the WALSs can be replayed past the end
of the backup.

Application failures.
Schema migration disasters.
Site hacks.

Can recover right to the most recent WAL
segment.

® Much closer to “now.’

® rsync.

® File system-level snapshot tools.
® SAN snapshotting.
® EBS snapshotting.
® /FS magic.

® DRBD-type solutions... if fsync works.

® Complex to set up, has multiple failure
modes.

® Backups are a pile of files, harder to
manage.

® WAL segments can pile up.
® Compress everything.

® Same major version only.

Simple tool to do a base backup.
Can use to prime a warm or hot standby.

Can receive the required VWAL segments as
well.

Great to use just to create an archive, even
if you are not going to prime a secondary.

A great solution from Heroku for AWS,
Rackspace, Azure.

Handles file system copy to cloud storage.
Handles WAL archiving to cloud storage.

Easy to set up just from the README.

® Be sure you keep everything.

® T[he backup label lets you know what you
need.

® Very busy sites can create WAL files faster
than you can archive them.

® Streaming replication in that case.

® Restoring from an archive is time-
consuming.

® Replaying WAL files can take as long as it
took to create them.

® Although 20%-40% is more typical.

® A warm standby mitigates this.

® Be sure you capture all of $PGDATA.

® And the data in tablespaces, if you use
them.

® You have to copy everything. Really.
Everything. pg xlog, pg clog...

® Except the text logs in pg log.

A PostgreSQL instance continuously
reading VWAL records and applying them.

You can switch over in a minute in case of
primary failure.

Still keep the original archive and WAL
segments for PITR, though.

Streaming replication is the right answer.

® A secondary continuously receives VWAL
information from a primary over the
network.

® WAL archiving not required (but you still
want it for PITR).

® Simple to set up.

® Secondary (can) stay very close to the
primary.

® Switchover loses a minimum of data.

® Switchover is very fast... no hours-long
restore process.

® DDL is pushed out for you!

® Can’t do point-in-time recovery.

® Any problem on the primary is
immediately pushed to the secondary.

® Keep a separate archive for PITR.
® |ike WAL archiving, all-or-nothing.

® Secondaries can be queried, but are read-
only.

® Create a WAL archive base backup (file
system backup + WAL files).

® Set up a recovery.conf file, and fire up the
secondary.

® Watch as it tracks the primary!

® Very few.You want to do this.

® The primary doesn’t know how far behind
the secondary is (in 9.3).

® The primary might throw away WAL
information if the secondary is far behind...

® ... requiring re-imaging the secondary.

® A WAL archive avoids this.

® By default, transactions are applied
asynchronously.

® Some committed transactions may be
lost in a failover.

® Synchronous replication avoids this...

® ... at a non-trivial performance penalty.

® WAL archiving can run alongside streaming
replication.

® Allows secondaries to recover after long
disconnections.

® PostgreSQL can be configured to clean up
WAL segments as they are no longer
required.

® Be sure that copying WAL files is atomic.

® scp is not atomic.

® A secondary going down can run both the
secondary and primary out of disk space.

® Big plus to cloud storage for VWALs:
Handles distribution for you.

® (9.4 has new wonderful features in this
area...)

® (... that we are not going to talk about.)

® Uses trigger-based system to push logical
changes to secondary systems.

® Slony, Bucardo, Londiste...

® | ots of control over what to replicate.

® Can replicate between PostgreSQL
versions (great for upgrades!).

® Full employment program for consultants
like me.

Full employment program for consultants
like me.

Fiddly to set up.
Impact on procedures, such as migrations.

Non-trivial load on machines.

® Not really intended as a backup solution.

® Although, if you have to have it for other
reasons, it can do that duty.

® 9.4 is going to completely change the
landscape here.

® No backup will capture the state of open
transactions.

® Yet another reason that long-running
transactions are a bad idea.

® A proper backup will consider all open
transactions rolled back when restored.

Building Your
Safety Net

Where can you store data safely?

Fast recovery tier — Machine in same data
center.

Emergency tier — Same hosting provider,
different data center.

Disaster recovery tier — Different hosting
provider, geographically isolated.

® ... or two, or three.

® Use for failover in case of primary failure.

® Do not direct significant query traffic to it.
® That can delay the replication stream.

® Synchronous replication if no transaction
loss can be tolerated.

® A cold standby in the emergency tier.
® Configured, but PostgreSQL not running.

® Received file system backups and WAL
archives.

® Bring up if required for point-in-time
recovery or if fast recovery tier unavailable.

® Copies of file system backups and VWALs
for archiving in disaster recovery tier.

® pg dumps, if practical.

® Different retention policies (fewer, longer)
than in other tiers.

Regularly test backups.
Use them to prime staging environment.

Distribute them (daily, weekly) to
developers.

Script the restores! Do not rely on manual
restoration.

Data center OK, office off-line.
Data center destroyed.

Entire region off-line (earthquake, major
storm).

Every bad thing you can imagine has
happened at some point.

® Make sure you can rebuild the host from
scratch.

® All real environments tend to “grow”
special requirements.

® Use a configuration management system!

® Salt, Chef, Puppet...

® Have a runbook for how to rebuild your
database environment.

® Hand it to a junior developer and don’t
answer questions.

® |terate until it can be done by anyone, no
matter how unsophisticated.

® Even the CEO.

VAT

o

X .
- o 2 .
. N :
A A - » . — y . - -4 .
-~ /op 1 o | .
“u - < y, - . - >
- o <N : - o Y 2 1.8

- f ‘- . —a 8 o~ . .

: Pl - : - - 42 wi - i)
o . 3 v A . - : . Y’
- > - -
.1e =0 - . - <l o'y y - L K "t _ -
! 5 : ’ 4 N - . s
. - - - B - . -
’] \' —..: A . $ v » .\ r K ‘| i’ : - = . \ o p- i . Al . : 'v
p— - . -5 = : e v X p /
" »

g Lo~ ; L4~ R ' -
- \ 4 X3 o ¢ \ o ..'t‘ _‘I - : A= /-

The First Step.

® Minimize communication channels.

® Decide on how to handle this in advance.
® Follow your instructions.
® |f something weird happens, stop.

® Crisis = Problem + Panic.

® Remember, you'll probably be doing this...

""""'1 rl‘q 170 g

® Develop and document your backup
procedures.

® Just because you're paranoid doesn’t mean
it's not going to fail.

® [est your procedures.

® Don’t rely on knowledge locked in
someone’s head to do restores.

Thank you!

http://pgexperts.com
http://pgexperts.com

