
Be
Very
Afraid

Christophe Pettus
PostgreSQL Experts

Logical Decoding & Backup Conference Europe 2014

You possess only
whatever will not be lost
in a shipwreck.

— Al-Ghazali

Hi.

• Christophe Pettus

• Consultant with PostgreSQL Experts, Inc.

• Working with PostgreSQL since 1997.

Backups are a waste of
time and money.
• … right up until you need them.

• … at which point, they become beyond
price.

• Consider the “would I have paid this” rule.

• Right now, with all my data lost, would I
pay the backup cost to get it back?

You have to have a
recovery solution…
• … unless the data can be reasonably

recreated from other sources.

• Most PostgreSQL databases aren’t in that
situation.

• So, let’s talk about how to implement this.

What can fail?

• Anything.

• The hardware.

• The software.

• Application, PostgreSQL bugs.

• The network.

• The place you’ve stored your backups.

A thought experiment.

• Right now, what happened if the data
center holding your database burned
down?

• While you were at the conference.

• In a no-mobile-reception zone?

• The goal is to say, “Oh, that? We know
exactly what to do. We know it works.”

Hardware failures.

• A single disk.

• A RAID array.

• Bad firmware upgrades.

• The whole machine.

• The whole data center.

• A whole region of data centers.

Storage failures.

• SANs? You are one bad firmware revision
from having a €25,000 end table.

• Disks purchased at the same time can have
correlated failures. Very bad in a RAID10.

• SSDs are not significantly more reliable
than spinning disks. Nice and fast, though!

Application Failures.

• Bad migrations.

• Dropping a needed field.

• “Cleanup” operations that expire needed
data.

• Bugs that destroy data.

Only Human.

• “Oh, was I logged into production?”

• rm -rf *

• Botched upgrades.

• Corrupted pushes of configuration data.

Bad People.

• Your application was hacked.

• You checked in a password or API key into
Github without realizing it.

• You fall a bit behind on reading security
advisories.

• An appliance is vulnerable even if you
aren’t.

“We’re covered.”

• Primary in AWS.

• Secondary in the same region, different AZ.

• Another set of secondaries in a different
region.

• Everything backed up devotedly to S3.

OK, we’re scared now!
What do we do?
• Decide on a backup strategy.

• Complexity, infrastructure support,
storage costs, recovery time.

• Document the backup and restore
procedures.

• Test, test, test.

Backup methods.

• pg_dump.

• File system backups + WAL archiving.

• Streaming replication.

• Logical replication.

pg_dump

• Takes a consistent, logical snapshot of the
database.

• On-line backup: Low impact on the running
system.

• I/O load, no schema changes.

• Highly selective backups: Pick databases,
schemas, tables, etc…

pg_dump, the good.

• Very simple to understand and script.

• Lots of control over exactly what to back
up.

• Compact backups, as indexes are excluded.

• Parallel backups are fast (for a copy
operation).

• Works across major versions.

pg_dump, the bad.

• It’s still a full database copy.

• A snapshot as of the start of the backup.

• Anything after that would be lost on a
recovery.

• Restores can take 3-5x as long as backups,
due to index recreation.

pg_dump, notes.

• Since it reads every row being backed up, it
can find lurking corruption.

• pg_dump to /dev/null

• A restore from a pg_dump is a new, clean
disk image.

pg_dump, procedures.

• Use custom format for dumps.

• Use parallel restore to speed up the
process.

• Always do an ANALYZE afterwards!

• Database statistics are not saved in
pg_dump’s format.

When to use pg_dump?

• Small databases.

• Small = pg_dump completes in
reasonable time.

• Databases that can lose important work
since the last pg_dump.

• As a compact snapshot for long-term
archiving or auditing.

File system backups +
WAL archiving.
• In PostgreSQL since 8.2.

• Uses file system tools and WAL archiving
to produce a backup.

WAL archiving, basic
procedure
• pg_start_backup()

• Copy contents of $PGDATA.

• Keep all WAL files generated while copy is
going on.

• pg_stop_backup()

• File system copy + WALs is your backup.

THE WALS ARE
REQUIRED.
• The file system snapshot is not consistent

or valid.

• The WAL records are required to make it
consistent.

• You need to save every WAL segment
created during the backup.

• Without them, the backup is useless.

WAL archiving, the good.

• Backup process does not pollute shared
buffers.

• Potential of using interesting ways of taking
the file system backup.

• Backup can be used to prime a secondary
for streaming replication.

• Point-in-time recovery.

Point-in-Time Recovery.

• When a WAL archive backup is restored,
the WAL records are “replayed.”

• They can be replayed all the way to the
end, or to an intermediate point.

• If WAL archiving continued after the backup
end, the WALs can be replayed past the end
of the backup.

You need point-in-time
recovery.
• Application failures.

• Schema migration disasters.

• Site hacks.

• Can recover right to the most recent WAL
segment.

• Much closer to “now.”

Taking the file system
snapshot.
• rsync.

• File system-level snapshot tools.

• SAN snapshotting.

• EBS snapshotting.

• ZFS magic.

• DRBD-type solutions… if fsync works.

WAL archiving, the bad.

• Complex to set up, has multiple failure
modes.

• Backups are a pile of files, harder to
manage.

• WAL segments can pile up.

• Compress everything.

• Same major version only.

pg_basebackup

• Simple tool to do a base backup.

• Can use to prime a warm or hot standby.

• Can receive the required WAL segments as
well.

• Great to use just to create an archive, even
if you are not going to prime a secondary.

WAL-E.

• A great solution from Heroku for AWS,
Rackspace, Azure.

• Handles file system copy to cloud storage.

• Handles WAL archiving to cloud storage.

• Easy to set up just from the README.

WAL archiving, pitfalls.

• Be sure you keep everything.

• The backup label lets you know what you
need.

• Very busy sites can create WAL files faster
than you can archive them.

• Streaming replication in that case.

WAL archiving, other
pitfalls.
• Restoring from an archive is time-

consuming.

• Replaying WAL files can take as long as it
took to create them.

• Although 20%-40% is more typical.

• A warm standby mitigates this.

WAL archiving, yet more
pitfalls.
• Be sure you capture all of $PGDATA.

• And the data in tablespaces, if you use
them.

• You have to copy everything. Really.
Everything. pg_xlog, pg_clog…

• Except the text logs in pg_log.

Warm Standby.

• A PostgreSQL instance continuously
reading WAL records and applying them.

• You can switch over in a minute in case of
primary failure.

• Still keep the original archive and WAL
segments for PITR, though.

• Streaming replication is the right answer.

Streaming Replication.

• A secondary continuously receives WAL
information from a primary over the
network.

• WAL archiving not required (but you still
want it for PITR).

Streaming Replication,
the good.
• Simple to set up.

• Secondary (can) stay very close to the
primary.

• Switchover loses a minimum of data.

• Switchover is very fast… no hours-long
restore process.

• DDL is pushed out for you!

Streaming Replication,
the bad.
• Can’t do point-in-time recovery.

• Any problem on the primary is
immediately pushed to the secondary.

• Keep a separate archive for PITR.

• Like WAL archiving, all-or-nothing.

• Secondaries can be queried, but are read-
only.

Streaming Replication,
procedure.
• Create a WAL archive base backup (file

system backup + WAL files).

• Set up a recovery.conf file, and fire up the
secondary.

• Watch as it tracks the primary!

Streaming Replication,
pitfalls.
• Very few. You want to do this.

• The primary doesn’t know how far behind
the secondary is (in 9.3).

• The primary might throw away WAL
information if the secondary is far behind…

• … requiring re-imaging the secondary.

• A WAL archive avoids this.

Streaming Replication,
notes.
• By default, transactions are applied

asynchronously.

• Some committed transactions may be
lost in a failover.

• Synchronous replication avoids this…

• … at a non-trivial performance penalty.

Why choose?

• WAL archiving can run alongside streaming
replication.

• Allows secondaries to recover after long
disconnections.

• PostgreSQL can be configured to clean up
WAL segments as they are no longer
required.

But be careful!

• Be sure that copying WAL files is atomic.

• scp is not atomic.

• A secondary going down can run both the
secondary and primary out of disk space.

• Big plus to cloud storage for WALs:
Handles distribution for you.

Logical Replication.

• (9.4 has new wonderful features in this
area…)

• (… that we are not going to talk about.)

• Uses trigger-based system to push logical
changes to secondary systems.

• Slony, Bucardo, Londiste…

Logical Replication,
the good.
• Lots of control over what to replicate.

• Can replicate between PostgreSQL
versions (great for upgrades!).

• Full employment program for consultants
like me.

Logical Replication, the bad.

• Full employment program for consultants
like me.

• Fiddly to set up.

• Impact on procedures, such as migrations.

• Non-trivial load on machines.

Logical Replication, notes.

• Not really intended as a backup solution.

• Although, if you have to have it for other
reasons, it can do that duty.

• 9.4 is going to completely change the
landscape here.

Backups and Transactions.

• No backup will capture the state of open
transactions.

• Yet another reason that long-running
transactions are a bad idea.

• A proper backup will consider all open
transactions rolled back when restored.

Building Your
Safety Net

Pick your archive location.

• Where can you store data safely?

• Fast recovery tier — Machine in same data
center.

• Emergency tier — Same hosting provider,
different data center.

• Disaster recovery tier — Different hosting
provider, geographically isolated.

#1: A Hot Standby…

• … or two, or three.

• Use for failover in case of primary failure.

• Do not direct significant query traffic to it.

• That can delay the replication stream.

• Synchronous replication if no transaction
loss can be tolerated.

#2: A Cold Standby

• A cold standby in the emergency tier.

• Configured, but PostgreSQL not running.

• Received file system backups and WAL
archives.

• Bring up if required for point-in-time
recovery or if fast recovery tier unavailable.

#3: Long-Term Archives.

• Copies of file system backups and WALs
for archiving in disaster recovery tier.

• pg_dumps, if practical.

• Different retention policies (fewer, longer)
than in other tiers.

Test your backups.

• Regularly test backups.

• Use them to prime staging environment.

• Distribute them (daily, weekly) to
developers.

• Script the restores! Do not rely on manual
restoration.

Do scenario planning.

• Data center OK, office off-line.

• Data center destroyed.

• Entire region off-line (earthquake, major
storm).

• Every bad thing you can imagine has
happened at some point.

Script everything.

• Make sure you can rebuild the host from
scratch.

• All real environments tend to “grow”
special requirements.

• Use a configuration management system!

• Salt, Chef, Puppet…

Document everything.

• Have a runbook for how to rebuild your
database environment.

• Hand it to a junior developer and don’t
answer questions.

• Iterate until it can be done by anyone, no
matter how unsophisticated.

• Even the CEO.

When disaster
strikes.

The First Step.

Stop. Think. Follow your
procedures.
• Minimize communication channels.

• Decide on how to handle this in advance.

• Follow your instructions.

• If something weird happens, stop.

• Crisis = Problem + Panic.

• Remember, you’ll probably be doing this…

… on no sleep.

In summary!

• Develop and document your backup
procedures.

• Just because you’re paranoid doesn’t mean
it’s not going to fail.

• Test your procedures.

• Don’t rely on knowledge locked in
someone’s head to do restores.

Thank you!

Christophe Pettus
PostgreSQL Experts, Inc.

pgexperts.com

thebuild.com

christophe.pettus@pgexperts.com

Twitter @xof

http://pgexperts.com
http://pgexperts.com

