
Corruption
War
Stories

Christophe Pettus
PostgreSQL Experts
PGConf US 2017

Christophe Pettus 
PostgreSQL Experts, Inc.

pgexperts.com

thebuild.com  
 
christophe.pettus@pgexperts.com 
 
Twitter @xof

http://pgexperts.com

It will happen.

• Database corruption will happen to you.

• Sooner or later.

• Fortunately, it’s super easy to recover!

Step 1:
Restore last-good

backup

Step 2:
Receive the praise

of a grateful
nation.

Time for coffee!

Oh.

• You don’t have a known-good backup?

• That’s a shame.

• Sadly, even good backups can…

• have hidden long-term corruption.

• be too old.

• (whisper it) be hit by PostgreSQL bugs.

Let’s talk about…

• Preventing corruption.

• Finding corruption.

• Fixing corruption…

• … if you can.

Preventing
Corruption

PostgreSQL is very trusting.

• PostgreSQL assumes the file system is
perfect.

• It cannot recover from any silent bad data
write (unless you are very lucky).

• With 9.3 checksums, you at least get a
warning.

• So use them.

Hardware is cheap. Data is
expensive.
• Use good-quality hardware.

• Be sure your hardware properly honors
fsync, end to end.

• The lack is more common than you
think.

• Avoid network-attached devices for
$PGDATA and backups.

Backup, backup, backup.

• What only exists on one drive you do not
truly possess.

• Be sure you follow the right backup
protocol for your technique.

• pg_start_backup(), etc.

• Test your backups.

• An untested backup strategy isn’t one.

Prophylactic pg_dump

• pg_dump to /dev/null.

• Reads every single row in the database.

• Great for finding lurking corruption.

• Of course, if you can save the dump file, do
so!

• Can also use the pgstattuple extension for
this… also does indexes!

What causes
corruption?

#1: Hardware failures.

• Underlying storage failure.

• Bad disk, bad controller.

• Garbage writes during power loss.

• Battery backup that didn’t.

• Bad RAM.

• Especially non-ECC RAM.

#2: Hardware “features.”

• Deferred or entirely missing fsync behavior.

• Often done to flatter benchmark results.

• Network-attached-storage that does not
handle detach gracefully.

• Soft-RAID edge conditions.

#3: PostgreSQL bugs.

• 9.2 and 9.3 had a series of unfortunate
replication bugs.

• They are not common.

• But they do happen.

• Who is running 9.6.1?

#4: Operator error.

• Backups that do not include critical files.

• Backups that do not follow protocol.

• Backups that forget external tablespaces.

• rm -rf in the wrong directory.

• Bungled attempts at problem recovery.

• Delete the wrong files to free space.

What to do?

• Buy good hardware, demand your cloud
provider do so, or have multi-tier
redundancy.

• Make backups, and test them.

• Stay up on PostgreSQL releases, and read
the release notes.

Basic Techniques.

Save all the parts!

• Stop PostgreSQL.

• Do a full file-system level backup.

• Keep that backup safe.

• Make changes methodically, and document
each step.

Side Note: Disk Space.

• Storage space is extremely inexpensive.

• No matter how big your database is…

• … have enough storage space to make a
full file-system level copy.

Index Corruption.

• The most common kind of corruption.

• Drop the index in a transaction, and
confirm that solves the problem.

• If so, rebuild the index.

• If not, it’s probably not index corruption.

New in PostgreSQL 10

• amcheck — contrib module to detect
malformed indexes.

• Also available for pre-10:

• https://github.com/petergeoghegan/
amcheck

• Does not repair corruption; just rebuild the
index.

https://github.com/petergeoghegan/amcheck
https://github.com/petergeoghegan/amcheck

Bad Data Page.

• Checksum failures, complaints about bad
headers, etc.

• Can you do a pg_dump of the table?

• Reads every row, output should be clean.

• zero_damaged_pages = on.

Really Bad Data Pages.

• Can you SELECT around them?

• Do a COPY out of the good data, drop
table, COPY back in.

• Or do a CREATE TABLE from the
SELECT, rename appropriately.

• DELETE just the bad rows by ctid, if you
can isolate them.

Finding bad data pages.

• Iterate through rows in PL/pgSQL…

• … with an exception block around the
SELECT.

• Catch and log any rows that throw an
exception.

• Very helpful for finding TOAST corruption.

Great and
Desperate Cures.

Known unknown knowns.

• All corruption is, by its nature, a one-off
situation.

• Be sure to determine the extent of it
before continuing.

• Be sure you can step backwards!

There are no
recipes.

REMEMBER.

WORK ON
A COPY.

First things first.

• Are there errors in dmesg indicating a
hardware or OS problem?

• Is the OOM killer terminating backends?

• Disk I/O errors?

• Can you cp -R the data directory to 
/dev/null?

Very, very bad data pages.

• As in, the backend crashes when it touches
them.

• Isolate pages, use dd to zero out those
blocks.

• Be sure to drop and recreate all indexes on
the table!

WAL files corrupt or
missing.
• You went on vacation…

• The system ran out of disk space…

• And they called you to say that it won’t
start now.

• “We just deleted some log files.”

• “Which ones?”

“pg_xlog”

“Is that bad?”

“Yes.”

Yay for PostgreSQL 10!

pg_resetxlog

• Tells PostgreSQL that WAL files it needs
for crash recovery… it doesn’t need.

• Can get the server to start with missing log
files.

• Read the instructions carefully!

• High risk of inconsistent data! Check the
database very thoroughly!

pg_clog

PG::InternalError: ERROR: could not
access status of transaction 2924295225
DETAIL: Could not read from file
"pg_clog/0AE4" at offset 212992:
Success.

pg_clog corruption.

• Good news: Rarely subtle.

• Missing file.

• Truncated file.

Patching.

• Replace a missing file with all-zeros file.

• 00 for a transaction means “in progress.”

• Previously-committed transactions can thus
disappear.

• Be prepared to do more cleanup in this
case.

System catalog corruption.

• The nightmare scenario.

• Very hard to recover from, unless the
corruption is very small.

• Probably requires expert attention to do
recovery or scavenging.

War Stories.

PG::InternalError: ERROR: could not
access status of transaction 2924295225
DETAIL: Could not read from file
"pg_clog/0AE4" at offset 212992:
Success.

So, how did we get here?

• Network connectivity issue caused
secondary to be promoted to primary.

• New secondary couldn’t handle load.

• Beefier primary was initialized from
secondary, but…

• … on startup, these errors popped out.

What happened?

• Same network problems that began the
situation caused the rsync building the
primary to abort.

• No one noticed in the rush to get the
primary back on line.

The fix…

• … the missing clog file could be copied
from the secondary and dropped into
place.

• Problem solved!

• Very lucky that clog file was available.

The moral?

• No matter how bad a disaster is…

• … rushing can make it worse.

• Make sure that you are not introducing
new problems as you are repairing old
ones.

ERROR: missing chunk number 0 for
toast value 968442 in pg_toast_263610

So, how did we get here?

• New primary provisioned by promoting
from secondary.

• Errors started appearing almost
immediately.

• But only one row, on one table…

Spooky!

• … and only on some queries.

• Isolating the record using primary key
found nothing; the record retrieved just
fine.

• Reindexing the TOAST table? No help.

• Iterating through the table did find it,
however.

What happened?

• Two levels of corruption.

• Bad TOAST entry, and…

• … two rows with the same primary key.

• One referring to the “bad” row.

• Index scans only found the “good” row.

• Seq scans found both.

The fix…

• Delete the "missing" row by ctid.

• Iterate through all other tables to confirm
no other corrupt rows.

• Rebuild indexes.

The moral?

• Read the release notes.

• This was directly related to an existing bug
in PostgreSQL.

• But the hosting provider* hadn’t upgraded
PostgreSQL promptly.

• * cough AWS cough

Uh, Christophe?
About that upgrade...

So, how did we get here?

• New primary provisioned by promoting
from secondary.

• New primary put into service, old primary
decommissioned.

• Everything looks fine for a few hours,
until…

Spooky!

• Some existing rows are missing.

• Some existing rows are duplicated, as if
both old and new from an UPDATE had
been committed.

• No error messages.

What happened?

• PostgreSQL bug.

• Since fixed.

• clog values were not properly being
transmitted from primary to secondary
under high-write-load conditions.

• So, some rolled back, etc.

The fix…

• Enough information in the database (date/
time stamps) to delete the bad rows, and
copy the missing ones from the old
database.

• Hand-crafted scripts to do so.

• Never, ever want to do that again.

The moral?

• Do not exclude that it could be a
PostgreSQL problem.

• Do thorough sanity checks on promoted
primaries.

• Have a client or employer who understands
open source software.

Nothing works.
Everything is broken.
We're all going to
die.

So, how did we get here?

• Database running on desktop hardware.

• Disk did not honor fsync.

• Power failure… with a UPS that hadn't
been tested in a while.

Spooky!

• PostgreSQL started up correctly, but…

• Backend crashed when touching certain
tables.

• Those tables were central to the
application.

What happened?

• Broad corruption on four tables…

• … and the sequences on those tables.

• Couldn't do a system-wide pg_dump.

• Had to do touch / crash / recovery to find
the damaged tables.

The fix…

• Schema-only dump to get a blank database.

• pg_dump to restore undamaged tables.

• Restore damaged tables from an old (but
still useful) backup.

• Old backup had an obsolete schema, so
transformation required.

• Manually reset sequences from data.

The moral?

• Desktop hardware is not a great choice for
a business-critical server.

• No location is too small to have a
secondary.

• Even very old backups can be useful in a
dire emergency.

ERROR: database is
not accepting
commands to avoid
wraparound data loss
in database "oops"

So, how did we get here?

• "Too many autovacuums going on"

• autovacuum_freeze_max_age = 2000000000

• vacuum_freeze_table_age = 1000000000

• Yay! No more autovacuum freeze jobs!

Spooky!

• On Halloween, no less…

• … wraparound warnings appeared in the
log.

• … but they weren't monitoring the logs
closely.

What happened?

• By the time they noticed, it was too late.

• xids being used faster than autovacuum
could freeze the table.

• Eventually hit shutdown mode.

The fix…

• Manually vacuum the "oldest" tables to get
the database back on-line.

• Aggressively vacuum the "oldest" tables as
the system goes back into production.

• Ignore complaints about how much I/O was
being done.

The moral?

• Don't crank up the autovacuum freeze
settings unless you do manual vacuums.

• Monitor errors and warnings in the
PostgreSQL logs.

• Don't terminate autovacuum freeze
processes thinking you will "deal with it
later."

In sum.

Remember the basics.

• Good hardware.

• Test your backups.

• Stay up on PostgreSQL news and apply
upgrades promptly.

• Monitor your log output.

• Get plenty of rest.

Thank you!

Christophe Pettus 
PostgreSQL Experts, Inc.

pgexperts.com

thebuild.com  
 
christophe.pettus@pgexperts.com 
 
Twitter @xof

http://pgexperts.com

