Corruption
War
Stories

Christophe Pettus
PostgreSQL Experts

Christophe Pettus
PostgreSQL Experts, Inc.

pgexperts.com

thebuild.com

christophe.pettus(

Twitter @xof

http://pgexperts.com

® Database corruption will happen to you.
® Sooner or later.

® Fortunately, it’s super easy to recover!

Step I:
Restore last-good
backup

Step 2:
Receive the praise
of a grateful
nation.

P
\"."; '.b y ' 7 -
B o et

| VS BB S5 .

- . e o~ «
TN AW Rl &
g~

® You don’t have a known-good backup!?
® That’s a shame.
® Sadly, even good backups can...
® have hidden long-term corruption.
® be too old.

® (whisper it) be hit by PostgreSQL bugs.

® Preventing corruption.
® Finding corruption.
® Fixing corruption...

® ...if you can.

Preventing
Corruption

® PostgreSQL assumes the file system is
perfect.

® |t cannot recover from any silent bad data
write (unless you are very lucky).

® With 9.3 checksums, you at least get a
warning.

® So use them.

® Use good-quality hardware.

® Be sure your hardware properly honors
fsync, end to end.

® The lack is more common than you
think.

® Avoid network-attached devices for
$PGDATA and backups.

® VWhat only exists on one drive you do not
truly possess.

® Be sure you follow the right backup
protocol for your technique.

® pg start backup(), etc.
® TJest your backups.

® An untested backup strategy isn’t one.

pg_dump to /dev/null.
Reads every single row in the database.
Great for finding lurking corruption.

Of course, if you can save the dump file, do
so!

Can also use the pgstattuple extension for
this... also does indexes!

What causes
corruption?

® Underlying storage failure.
® Bad disk, bad controller.
® Garbage writes during power loss.
® Battery backup that didn't.
® Bad RAM.
® Especially non-ECC RAM.

® Deferred or entirely missing fsync behavior.
® (Often done to flatter benchmark results.

® Network-attached-storage that does not
handle detach gracefully.

® Soft-RAID edge conditions.

® 9.2 and 9.3 had a series of unfortunate
replication bugs.

® They are not common.
® But they do happen.
® Who is running 9.6.1?

Backups that do not include critical files.
Backups that do not follow protocol.
Backups that forget external tablespaces.
rm -rf in the wrong directory.

Bungled attempts at problem recovery.

® Delete the wrong files to free space.

v

GitLab.com Database Incident - 2017/01/31

Note: This incident affected the database (including issues and merge requests) but not the git repo’s (repositories and wikis).

YouTube Live stream - Follow us live debating and problem solving!

Timeline (all times UTC) 1
Recovery - 2017/01/31 23:00 (backup from £17:20 UTC) 2
Problems Encountered 4

External help 5
Hugops (please add kind reactions here, from twitter and elsewhere) 5
Stephen Frost 5
Sam MclLeod 5

Impact

1. £6 hours of data loss

2. 4613 regular projects, 74 forks, and 350 imports are lost (roughly); 5037 projects in total. Since Git repositories are NOT lost, we can recreate all of the projects whose user/group exist
cannot restore any of these projects’ issues, etc.

3. +4979 (so £5000) comments lost

4. 707 users lost potentially, hard to tell for certain from the Kibana logs

5. Webhooks created before Jan 31st 17:20 were restored, those created after this time are lost

Timeline (all times UTC)

1.2017/01/31 16:00/17:00 - 21:00
a. YP is working on setting up pgpool and replication in staging, creates an LVM snapshot to get up to date production data to staging, hoping he can re-use this for bootstrapping
roughly 6 hours before data loss.
b. Getting replication to work is proving to be problematic and time consuming (estimated at £20 hours just for the initial pg_basebackup sync). The LVM snapshot is not usable or
could figure out. Work is interrupted due to this (as YP needs the help of another collegue who's not working this day), and due to spam/high load on GitLab.com

2.2017/01/31 21:00 - Spike in database load due to spam users - Twitter | Slack

a. Blocked users based on IP address
b. Removed a user for using a repository as some form of CDN, resulting in 47 000 IPs signing in using the same account (causing high DB load). This was communicated with th

team.

c. Removed users for spamming (by creating snippets) - Slack

d. Database load goes back to normal, some manual PostgreSQL vacuuming is applied here and there to catch up with a large amount of dead tuples.
3. 2017/01/31 22:00 - Replication lag alert triggered in pagerduty Slack

a. Attempts to fix db2, it's lagging behind by about 4 GB at this point

b. db2.cluster refuses to replicate, /var/opt/gitlab/postgresql/data is wiped to ensure a clean replication

c. db2.cluster refuses to connect to db1, complaining about max_wal_senders being too low. This setting is used to limit the number of WAL (= replication) clients
d. YP adjusts max_wal_senders to 32 on db1, restarts PostgreSQL

e. PostgreSQL complains about too many semaphores being open, refusing to start
f. YP adjusts max_connections to 2000 from 8000, PostgreSQL starts again (despite 8000 having been used for almost a year)

g. db2.cluster still refuses to replicate, though it no longer complains about connections; instead it just hangs there not doing anything
h. At this point frustration begins to kick in. Earlier this night YP explicitly mentioned he was going to sign off as it was getting late (23:00 or so local time), but didn’t due to the repl

of a sudden.

® Buy good hardware, demand your cloud
provider do so, or have multi-tier
redundancy.

® Make backups, and test them.

® Stay up on PostgreSQL releases, and read
the release notes.

Stop PostgreSQL.
Do a full file-system level backup.
Keep that backup safe.

Make changes methodically,and document
each step.

® Storage space is extremely inexpensive.
® No matter how big your database is...

® ... have enough storage space to make a
full file-system level copy.

The most common kind of corruption.

Drop the index in a transaction, and
confirm that solves the problem.

If so, rebuild the index.

If not, it’'s probably not index corruption.

® amcheck — contrib module to detect
malformed indexes.

® Also available for pre-10:

® https://github.com/petergeoghegan/
amcheck

® Does not repair corruption; just rebuild the
index.

https://github.com/petergeoghegan/amcheck
https://github.com/petergeoghegan/amcheck

® Checksum failures, complaints about bad
headers, etc.

® Can you do a pg_dump of the table?
® Reads every row, output should be clean.

® zero damaged pages = on.

® Can you SELECT around them!?

® Do a COPY out of the good data, drop
table, COPY back in.

® Or do a CREATE TABLE from the
SELECT, rename appropriately.

® DELETE just the bad rows by ctid, if you
can isolate them.

Iterate through rows in PL/pgSQL...

... with an exception block around the
SELECT.

Catch and log any rows that throw an
exception.

Very helpful for finding TOAST corruption.

Great and
Desperate Cures.

® All corruption is, by its nature, a one-off
situation.

® Be sure to determine the extent of it
before continuing.

® Be sure you can step backwards!

® Are there errors in dmesg indicating a
hardware or OS problem!?

® |s the OOM killer terminating backends?
® Disk I/O errors!?

® Can you cp -R the data directory to
/dev/null?

® As in, the backend crashes when it touches
them.

® |solate pages, use dd to zero out those
blocks.

® Be sure to drop and recreate all indexes on
the table!

You went on vacation...
The system ran out of disk space...

And they called you to say that it won’t
start now.

“WVe just deleted some log files.”

“Which ones?”’

“Pg_XIOg”

“Is that bad?”’

(‘Yes.”

Yay for PostgreSQL 0!

® Tells PostgreSQL that WAL files it needs
for crash recovery... it doesn’t need.

® Can get the server to start with missing log
files.

® Read the instructions carefully!

® High risk of inconsistent data! Check the
database very thoroughly!

PG::InternalError: ERROR: could not
access status of transaction 2924295225
DETAIL: Could not read from file
"pg_clog/@AE4" at offset 212992:
Success.

pg clog corruption.

® Good news: Rarely subtle.
® Missing file.

® T[runcated file.

Replace a missing file with all-zeros file.
00 for a transaction means “in progress.”

Previously-committed transactions can thus
disappear.

Be prepared to do more cleanup in this
case.

® The nightmare scenario.

® Very hard to recover from, unless the
corruption is very small.

® Probably requires expert attention to do
recovery or scavenging.

PG::InternalError: ERROR: could not
access status of transaction 2924295225
DETAIL: Could not read from file
"pg_clog/@AE4" at offset 212992:
Success.

Network connectivity issue caused
secondary to be promoted to primary.

New secondary couldn’t handle load.

Beefier primary was initialized from
secondary, but...

... On startup, these errors popped out.

® Same network problems that began the
situation caused the rsync building the
primary to abort.

® No one noticed in the rush to get the
primary back on line.

® ... the missing clog file could be copied
from the secondary and dropped into
place.

® Problem solved!

® Very lucky that clog file was available.

® No matter how bad a disaster is...
® ... rushing can make it worse.

® Make sure that you are not introducing
new problems as you are repairing old
ones.

ERROR: missing chunk number @ for
toast value 968442 1n pg_toast_263610

® New primary provisioned by promoting
from secondary.

® Errors started appearing almost
immediately.

® But only one row, on one table...

... and only on some queries.

Isolating the record using primary key
found nothing; the record retrieved just
fine.

Reindexing the TOAST table? No help.

Iterating through the table did find it,
however.

® [wo levels of corruption.

® Bad TOAST entry, and...

® ... two rows with the same primary key.
® One referring to the “bad” row.

® |ndex scans only found the “good” row.

® Seq scans found both.

® Delete the "missing” row by ctid.

® |terate through all other tables to confirm
no other corrupt rows.

® Rebuild indexes.

® Read the release notes.

® This was directly related to an existing bug
in PostgreSQL.

® But the hosting provider™ hadn’t upgraded
PostgreSQL promptly.

® * cough AWS cough

Uh, Christophe?
About that upgrade...

® New primary provisioned by promoting
from secondary.

® New primary put into service, old primary
decommissioned.

® Everything looks fine for a few hours,
until. ..

® Some existing rows are missing.

® Some existing rows are duplicated, as if
both old and new from an UPDATE had
been committed.

® No error messages.

® PostgreSQL bug.
® Since fixed.

® clog values were not properly being
transmitted from primary to secondary
under high-write-load conditions.

® So, some rolled back, etc.

® Enough information in the database (date/
time stamps) to delete the bad rows, and

copy the missing ones from the old
database.

® Hand-crafted scripts to do so.

® Never, ever want to do that again.

® Do not exclude that it could be a
PostgreSQL problem.

® Do thorough sanity checks on promoted
primaries.

® Have a client or employer who understands
open source software.

Nothing works.
Everything 1s broken.
We're all going to
die.

® Database running on desktop hardware.
® Disk did not honor fsync.

® Power failure... with a UPS that hadn't
been tested in a while.

® PostgreSQL started up correctly, but...

® Backend crashed when touching certain
tables.

® [hose tables were central to the
application.

® Broad corruption on four tables...
® ... and the sequences on those tables.
® Couldn't do a system-wide pg dump.

® Had to do touch / crash / recovery to find
the damaged tables.

® Schema-only dump to get a blank database.
® pg dump to restore undamaged tables.

® Restore damaged tables from an old (but
still useful) backup.

® Old backup had an obsolete schema, so
transformation required.

® Manually reset sequences from data.

® Desktop hardware is not a great choice for
a business-critical server.

® No location is too small to have a
secondary.

® Even very old backups can be useful in a
dire emergency.

ERROR: database 1s
not accepting
commands to avoid
wraparound data loss
1n database "oops”

"Too many autovacuums going on"

autovacuum freeze max _age = 2000000000

vacuum freeze table age = 1000000000

Yay! No more autovacuum freeze jobs!

® On Halloween, no less...

® ... wraparound warnings appeared in the
log.

® .. but they weren't monitoring the logs
closely.

® By the time they noticed, it was too late.

® Xids being used faster than autovacuum
could freeze the table.

® Eventually hit shutdown mode.

® Manually vacuum the "oldest” tables to get
the database back on-line.

® Aggressively vacuum the "oldest” tables as
the system goes back into production.

® |gnore complaints about how much I/O was
being done.

® Don't crank up the autovacuum freeze
settings unless you do manual vacuums.

® Monitor errors and warnings in the
PostgreSQL logs.

® Don't terminate autovacuum freeze
processes thinking you will "deal with it
later.”

In sum.

Good hardware.
Test your backups.

Stay up on PostgreSQL news and apply
upgrades promptly.

Monitor your log output.

Get plenty of rest.

Thank you!

Christophe Pettus
PostgreSQL Experts, Inc.

pgexperts.com

thebuild.com

christophe.pettus(

Twitter @xof

http://pgexperts.com

