
Finding and Repairing
Database
Corruption

Christophe Pettus
PostgreSQL Experts

PostgreSQL Conference Europe 2014

It will happen.

• Database corruption will happen to you.

• Sooner or later.

• Fortunately, it’s super easy to recover!

Step 1:
Restore last-good

backup

Step 2:
Receive the praise

of a grateful
nation.

Lunchtime
yet?

Oh.

• You don’t have a known-good backup?

• That’s a shame.

• Sadly, even good backups can…

• Have hidden long-term corruption.

• be too old.

• (whisper it) or PostgreSQL bugs.

For example…

• PostgreSQL 9.1 streaming replication bugs.

• Secondary could have silent corruption.

• Fail over, promote secondary, and…

• … horrible things happened.

Let’s talk about…

• Preventing corruption.

• Finding corruption.

• Fixing corruption…

• … if you can.

Hi.

• Christophe Pettus

• Consultant with PostgreSQL Experts, Inc.

• Working with PostgreSQL since 1997.

Preventing
Corruption

PostgreSQL is very trusting.

• PostgreSQL assumes the file system is
perfect.

• It cannot recover from any silent bad data
write (unless you are very lucky).

• With 9.3 checksums, you at least get a
warning.

• So use them.

Hardware is cheap. Data is
expensive.
• Use good-quality hardware.

• Be sure your hardware properly honors
fsync, end to end.

• This is more common than you think.

• Avoid (if at all possible) network-attached
devices for $PGDATA.

Backup, backup, backup.

• What only exists on one drive you do not
truly possess.

• Be sure you follow the right backup
protocol for your technique.

• pg_start_backup(), etc.

• Test your backups.

• An untested backup strategy isn’t one.

Prophylactic pg_dump

• pg_dump to /dev/null.

• Reads every single row in the database.

• Great for finding lurking corruption.

• Of course, if you can save the dump file, do
so!

What causes
corruption?

#1: Hardware failures.

• Underlying storage failure.

• Bad disk, bad controller.

• Garbage writes during power loss.

• Battery backup that didn’t.

• Bad RAM.

• Especially non-ECC RAM.

#2: Hardware “features.”

• Deferred or entirely missing fsync behavior.

• Often done to flatter benchmark results.

• Network-attached-storage that does not
handle detach gracefully.

• Soft-RAID edge conditions.

#3: PostgreSQL bugs.

• 9.x had a series of unfortunate replication
bugs.

• Used to be extremely rare.

• With luck, will become extremely rare
again.

#4: Operator error.

• Backups that do not include critical files.

• Backups that do not follow protocol.

• Backups that forget external tablespaces.

• rm -rf in the wrong directory.

• Bungled attempts at problem recovery.

• Delete the wrong files to free space.

What to do?

• Buy good hardware, demand your cloud
provider do so, or have multi-tier
redundancy.

• Make backups, and test them.

• Stay up on PostgreSQL releases, and read
the release notes.

PostgreSQL
Disk Format

A quick overview.

• Full details are in the documentation…

• … or in the code.

• Enough to understand what the problems
might be.

Everything’s under
$PGDATA.
• The heap and indexes (actual data).

• The write-ahead log (at least via symlink)

• The commit log.

base/

• Contains all “real” database data.

• Tables, indexes.

• Subdirectories, one per database.

• Named with OID for the database.

total 0
drwx------ 14 postgres postgres 476 Sep 17 12:59 .
drwx------ 22 postgres postgres 748 Oct 18 14:51 ..
drwx------ 238 postgres postgres 8092 Nov 5 2013 1
drwx------ 302 postgres postgres 10268 Oct 18 14:52 108290
drwx------ 238 postgres postgres 8092 Sep 17 2013 12292
drwx------ 296 postgres postgres 10064 Oct 18 14:52 1653531
drwx------ 315 postgres postgres 10710 Sep 8 16:09 1653924
drwx------ 491 postgres postgres 16694 Oct 18 14:52 1724452
drwx------ 630 postgres postgres 21420 Oct 18 14:52 1781788
drwx------ 697 postgres postgres 23698 Oct 18 14:52 1783503
drwx------ 242 postgres postgres 8228 Oct 18 14:51 1785736
drwx------ 248 postgres postgres 8432 Oct 18 14:52 271548
drwx------ 368 postgres postgres 12512 Jul 10 13:46 90822
drwx------ 2 postgres postgres 68 Sep 14 15:35 pgsql_tmp

postgres=# select oid from pg_database where datname='silverandgold';
 oid

 1653924
(1 row)

In each database
directory…
• One big list of files.

• One or more per relation (table, index).

• The name is the relfilenode of the relation.

drwx------ 316 postgres postgres 10744 Oct 21 15:13 .
drwx------ 14 postgres postgres 476 Sep 17 12:59 ..
-rw------- 1 postgres postgres 172032 Jun 29 10:04 12030
-rw------- 1 postgres postgres 24576 Jun 29 10:04 12030_fsm
-rw------- 1 postgres postgres 8192 Jun 29 10:04 12030_vm
-rw------- 1 postgres postgres 16384 Jun 24 12:48 12032
-rw------- 1 postgres postgres 24576 May 31 14:36 12032_fsm
-rw------- 1 postgres postgres 8192 May 31 15:07 12032_vm
-rw------- 1 postgres postgres 16384 Jun 24 12:48 12034
-rw------- 1 postgres postgres 40960 Jun 29 10:04 12035
-rw------- 1 postgres postgres 73728 Jun 29 10:04 12036
-rw------- 1 postgres postgres 24576 May 31 15:07 12036_fsm
-rw------- 1 postgres postgres 8192 May 31 14:36 12036_vm
-rw------- 1 postgres postgres 32768 Jun 29 10:04 12038
-rw------- 1 postgres postgres 40960 Jun 29 10:04 12039
-rw------- 1 postgres postgres 0 May 31 14:36 12044
-rw------- 1 postgres postgres 8192 May 31 14:36 12046
-rw------- 1 postgres postgres 8192 May 31 14:36 12047
-rw------- 1 postgres postgres 450560 Jun 29 10:04 12048
-rw------- 1 postgres postgres 24576 Jun 24 12:48 12048_fsm
-rw------- 1 postgres postgres 8192 May 31 14:36 12048_vm
-rw------- 1 postgres postgres 155648 Jun 29 10:04 12050

silverandgold=# select relfilenode from pg_class where relname='comic_chapter';
 relfilenode

 1654288
(1 row)

Relation files.

• If >1 GB, divided into 1 GB segments.

• .1, .2, .3…

• _fsm is the free space map.

• _vm is the visibility map.

• Small / new tables might be missing one
or both of these.

Inside the table files.

• Table (and index) files are divided into 8KB
pages.

• Can change this at compile time; no one
does.

• Each page contains 0+ tuples.

• Tuples do not span pages; TOAST is used
for larger attributes.

Header ItemIdData Free Space Items

Page Format.

Items.

• Each item is variable length.

• Large attributes are (usually) compressed,
and then spilled to TOAST if they won’t fit.

• Each item begins with a bitmap of NULL
fields (if any are NULLable), then the
columns in order.

A note about items.

• You cannot decode an item without access
to its schema definition.

• Thus, corruption of the system catalogs can
render a table unreadable.

ctids.

• Every row in a table has a ctid.

• (block number, item offset) pair.

• Can be used to select a precise row in
absence of a primary key…

• … or if corruption has rendered the
primary key unusuable.

silverandgold=# select ctid from comic_issue;
 ctid

 (0,2)
 (0,4)
 (0,6)
 (0,10)
(4 rows)

silverandgold=# select id from comic_issue where ctid='(0,6)';
 id

 4
(1 row)

Indexes.

• For B-tree indexes, the same general
structure as tuple pages.

• “Items” are heap pointers (for leaf nodes),
index pointers (for internal nodes).

• Other index types have their own formats,
but generally follow this one.

Write-Ahead Log

• Stored in pg_xlog/

• Can be symlinked elsewhere

• Contains a sequence of 16MB segments.

• Files are recycled and renamed when no
longer required for crash protection or
replication.

Yes, these files are
important.
• pg_xlog bloating is a common failure

condition.

• … especially with an archive_command
that is failing for some reason.

• The “log” name implies something
unfortunate.

Commit Log.

• Stored in pg_clog/

• Series of files containing status of
transactions.

• Stored as bitmaps, two bits per transaction.

• Be sure your backups include it!

Basic Techniques.

Save all the parts!

• Stop PostgreSQL.

• Do a full file-system level backup.

• Keep that backup safe.

• Make changes methodically, and document
each step.

Index Corruption.

• The most common kind of corruption.

• Drop the index in a transaction, and
confirm that solves the problem.

• If so, rebuild the index.

• If not, it’s probably not index corruption.

Take a pg_dump.

• pg_dump reads every row, and…

• … creates a logically-good snapshot.

• Restore that into a clean database.

Bad Data Page.

• Checksum failures, complaints about bad
headers, etc.

• Can you do a pg_dump of the table?

• zero_damaged_pages = on.

Really Bad Data Pages.

• Can you SELECT around them?

• Do a COPY out of the good data, drop
table, COPY back in.

• Or do a CREATE TABLE from the
SELECT, rename appropriately.

• DELETE just the bad rows by ctid, if you
can isolate them.

Finding bad data pages.

• Iterate through rows in PL/pgSQL…

• … with an exception block around the
SELECT.

• Catch and log any rows that throw an
exception.

• Very helpful for finding TOAST corruption.

Great and
Desperate Cures.

Known unknown knowns.

• All corruption is, by its nature, a one-off
situation.

• Be sure to determine the extent of it
before continuing.

• Be sure you can step backwards!

There are no
recipes.

REMEMBER.

WORK ON
A COPY.

First things first.

• Are there errors in demsg indicating a
hardware or OS problem?

• Is the OOM killer terminating backends?

• Disk I/O errors?

• Can you cp -R the data directory to
/dev/null?

Very, very bad data pages.

• As in, the backend crashes when it touches
them.

• Isolate pages, use dd to zero out those
blocks.

• Be sure to drop and recreate all indexes on
the table!

WAL files corrupt or
missing.
• You went on vacation…

• The system ran out of disk space…

• And they called you to say that it won’t
start now.

• “We just deleted some log files.”

• “Which ones?”

“pg_xlog”

“Is that bad?”

“Yes.”

pg_resetxlog

• Tells PostgreSQL that WAL files it needs
for crash recovery… it doesn’t need.

• Can get the server to start with missing log
files.

• Read the instructions carefully!

• High risk of inconsistent data! Check the
database very thoroughly!

pg_clog

PG::InternalError: ERROR: could not
access status of transaction 2924295225
DETAIL: Could not read from file
"pg_clog/0AE4" at offset 212992:
Success.

pg_clog corruption.

• Good news: Rarely subtle.

• Missing file.

• Truncated file.

Patching.

• Replace a missing file with all-zeros file.

• 00 for a transaction means “in progress.”

• Previously-committed transactions can thus
disappear.

• Be prepared to do more cleanup in this
case.

System catalog corruption.

• The nightmare scenario.

• Very hard to recover from, unless the
corruption is very small.

• Probably requires expert attention to do
recovery or scavenging.

War Stories.

PG::InternalError: ERROR: could not
access status of transaction 2924295225
DETAIL: Could not read from file
"pg_clog/0AE4" at offset 212992:
Success.

So, how did we get here?

• Network connectivity issue caused
secondary to be promoted to primary.

• New secondary couldn’t handle load.

• Beefier primary was initialized from
secondary, but…

• … on startup, these errors popped out.

What happened?

• Same network problems that began the
situation caused the rsync building the
primary to abort.

• No one noticed in the rush to get the
primary back on line.

The fix…

• … the missing clog file could be copied
from the secondary and dropped into
place.

• Problem solved!

• Very lucky that clog file was available.

The moral?

• No matter how bad a disaster is…

• … rushing can make it worse.

• Make sure that you are not introducing
new problems as you are repairing old
ones.

ERROR: missing chunk number 0 for
toast value 968442 in pg_toast_263610

So, how did we get here?

• New primary provisioned by promoting
from secondary.

• Errors started appearing almost
immediately.

• But only one row, on one table…

Spooky!

• … and only on some queries.

• Isolating the record using primary key
found nothing; the record retrieved just
fine.

• Reindexing the TOAST table? No help.

• Iterating through the table did find it,
however.

What happened?

• Two levels of corruption.

• Bad TOAST entry, and…

• … two rows with the same primary key.

• One referring to the “bad” row.

• Index scans only found the “good” row.

• Seq scans found both.

The fix…

• Delete the missing row by ctid.

• Iterate through all other tables to confirm
no other corrupt rows.

The moral?

• Read the release notes.

• This was directly related to an existing bug
in PostgreSQL.

• But the hosting provider* hadn’t upgraded
PostgreSQL promptly.

• * cough AWS cough

Uh, Christophe?
About that upgrade...

So, how did we get here?

• New primary provisioned by promoting
from secondary.

• New primary put into service, old primary
decommissioned.

• Everything looks fine for a few hours,
until…

Spooky!

• Some existing rows are missing.

• Some existing rows are duplicated, as if
both old and new from an UPDATE had
been committed.

• No error messages.

What happened?

• PostgreSQL bug.

• Since fixed.

• clog values were not properly being
transmitted from primary to secondary
under high-write-load conditions.

• So, some rolled back, etc.

The fix…

• Enough information in the database (date/
time stamps) to delete the bad rows, and
copy the missing ones from the old
database.

• Hand-crafted scripts to do so.

• Never, ever want to do that again.

The moral?

• Do not exclude that it could be a
PostgreSQL problem.

• Do thorough sanity checks on promoted
primaries.

• Have a client or employer who understands
open source software.

Thank you!

Christophe Pettus
PostgreSQL Experts, Inc.

pgexperts.com

thebuild.com

christophe.pettus@pgexperts.com

Twitter @xof

http://pgexperts.com
http://pgexperts.com

