Finding and Repairing
Database
Corruption

Christophe Pettus
PostgreSQL Experts

® Database corruption will happen to you.
® Sooner or later.

® Fortunately, it’s super easy to recover!

Step I:
Restore last-good
backup

Step 2:
Receive the praise

of a grateful
nation.

® You don’t have a known-good backup!?
® That’s a shame.
® Sadly, even good backups can...
® Have hidden long-term corruption.
® be too old.

® (whisper it) or PostgreSQL bugs.

® PostgreSQL 9.1 streaming replication bugs.
® Secondary could have silent corruption.
® Fail over, promote secondary, and...

® ... horrible things happened.

Let’s talk about...

® Preventing corruption.
® Finding corruption.
® Fixing corruption...

® ... if you can.

® Christophe Pettus
® Consultant with PostgreSQL Experts, Inc.
® Working with PostgreSQL since 1997.

Preventing
Corruption

® PostgreSQL assumes the file system is
perfect.

® |t cannot recover from any silent bad data
write (unless you are very lucky).

® With 9.3 checksums, you at least get a
warning.

® So use them.

® Use good-quality hardware.

® Be sure your hardware properly honors
fsync, end to end.

® This is more common than you think.

® Avoid (if at all possible) network-attached
devices for $PGDATA.

® VWhat only exists on one drive you do not
truly possess.

® Be sure you follow the right backup
protocol for your technique.

® pg start backup(), etc.
® TJest your backups.

® An untested backup strategy isn’t one.

pg_dump to /dev/null.
Reads every single row in the database.
Great for finding lurking corruption.

Of course, if you can save the dump file, do
so!

What causes
corruption?

® Underlying storage failure.
® Bad disk, bad controller.
® Garbage writes during power loss.
® Battery backup that didn't.
® Bad RAM.
® Especially non-ECC RAM.

® Deferred or entirely missing fsync behavior.
® Often done to flatter benchmark results.

® Network-attached-storage that does not
handle detach gracefully.

® Soft-RAID edge conditions.

® 9.x had a series of unfortunate replication
bugs.

® Used to be extremely rare.

® With luck, will become extremely rare
again.

Backups that do not include critical files.
Backups that do not follow protocol.
Backups that forget external tablespaces.
rm -rf in the wrong directory.

Bungled attempts at problem recovery.

® Delete the wrong files to free space.

® Buy good hardware, demand your cloud
provider do so, or have multi-tier
redundancy.

® Make backups, and test them.

® Stay up on PostgreSQL releases, and read
the release notes.

-
YNy
)

® Full details are in the documentation...
® ... orin the code.

® Enough to understand what the problems
might be.

Everything’s under
$PGDATA.

® The heap and indexes (actual data).

® The write-ahead log (at least via symlink)

® The commit log.

I”

® Contains all “‘real” database data.
® Tables, indexes.
® Subdirectories, one per database.

® Named with OID for the database.

total O

drwx------ 14
drwx------ 22
drwx------ 238
drwx------ 302
drwx------ 238
drwx------ 296
drwx------ 315
drwx------ 491
drwx------ 630
drwx------ 097
drwx------ 242
drwx------ 248
drwx------ 368
drwx------ 2

postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres

postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres
postgres

476
748
8092
10268
8092
100064
10710
16694
21420
23698
8228
8432
12512
08

Sep
Oct
Nov
Oct
Sep
Oct
Sep
Oct

Oct
Oct

Oct
Oct

Jul
Sep

17
18

18
17
18

18
18
18
18
18
10
14

12:
14 :

14 .

59 .
51 ..

2013

52

2013

14 :
16:
:52
14 :
14 :
14 :

14

14
13

15:

52
09

52
52

51

:52
1406

35

1
108290
12292
1653531

1653924
1724452

1781788
1783503

1785736
271548

90822
pgsql_tmp

postgres=# select oid from pg_database where datname='silverandgold’;
oid

1653924
(1 row)

® One big list of files.
® One or more per relation (table, index).

® [he name is the relfilenode of the relation.

14

P PR RPRPRRPRRPRRRPRRPRRRPRPRRPRRPREPR

postgres

postgres
postgres

postgres
postgres

postgres
postgres

postgres
postgres

postgres
postgres

postgres
postgres

postgres
postgres

postgres
postgres

postgres
postgres

postgres
postgres

postgres

postgres

postgres
postgres

postgres
postgres

postgres
postgres

postgres
postgres

postgres
postgres

postgres
postgres

postgres
postgres

postgres
postgres

postgres
postgres

postgres
postgres

postgres

10744
476

172032

24576
8192

16384
245706

8192
16384

40900
73728
245706

8192

32768
40900

0
8192

8192

4505600

24576
8192

155648

Oct
Sep
Jun

Jun
Jun
Jun
May
May
Jun

Jun
Jun
May
May
Jun
Jun
May
May
May
Jun
Jun
May
Jun

21
17
29
29
29
24
31
31
24
29
29
31
31
29
29
31
31
31
29
24
31
29

15:
12:
10:
10:
10:
148
14 :
107
148
10:
10:
107
:30
10:
10:
14 :
:30
:30
10:
148
14 :
10:

12
15
12

15
14

14
14

12

13 .

59
04

04

04

30

04
04

04
04

36

04

30
04

12030
12030_fsm
12030_vm

12032
12032_fsm

12032 _vm
12034

12035
12036

12036_fsm
12036_vm

12038
12039

12044
12046

12047
12048

12048 _fsm
12048_vm

12050

silverandgold=# select relfilenode from pg_class where relname='comic_chapter';
relfilenode

1654288
(1 row)

e |[f>| GB, divided into | GB segments.
o |,.2 3...

® fsmis the free space map.

® vm is the visibility map.

® Small / new tables might be missing one
or both of these.

® Table (and index) files are divided into 8KB
pages.

® Can change this at compile time; no one
does.

® Each page contains 0+ tuples.

® TJuples do not span pages; TOAST is used
for larger attributes.

Page Format.

® Fach item is variable length.

® |arge attributes are (usually) compressed,
and then spilled to TOAST if they won’t fit.

® Fach item begins with a bitmap of NULL
fields (if any are NULLable), then the

columns in order.

® You cannot decode an item without access
to its schema definition.

® Thus, corruption of the system catalogs can
render a table unreadable.

® Every row in a table has a ctid.
® (block number, item offset) pair.

® Can be used to select a precise row in
absence of a primary key...

® ... or if corruption has rendered the
primary key unusuable.

silverandgold=# select ctid from comic_issue;
ctid

silverandgold=# select i1d from comic_issue where ctid='(0,6)";
1d

4
(1 row)

® For B-tree indexes, the same general
structure as tuple pages.

® “|tems” are heap pointers (for leaf nodes),
index pointers (for internal nodes).

® Other index types have their own formats,
but generally follow this one.

® Stored in pg_xlog/
® Can be symlinked elsewhere
® Contains a sequence of |6MB segments.

® Files are recycled and renamed when no
longer required for crash protection or
replication.

® pg xlog bloating is a common failure
condition.

® ... especially with an archive_command
that is failing for some reason.

® The “log” name implies something
unfortunate.

Stored in pg_clog/

Series of files containing status of
transactions.

Stored as bitmaps, two bits per transaction.

Be sure your backups include it!

Stop PostgreSQL.
Do a full file-system level backup.
Keep that backup safe.

Make changes methodically,and document
each step.

The most common kind of corruption.

Drop the index in a transaction, and
confirm that solves the problem.

If so, rebuild the index.

If not, it’'s probably not index corruption.

® pg dump reads every row, and...
® ... creates a logically-good snapshot.

® Restore that into a clean database.

® Checksum failures, complaints about bad
headers, etc.

® Can you do a pg_dump of the table?

® zero damaged pages = on.

® Can you SELECT around them!?

® Do a COPY out of the good data, drop
table, COPY back in.

® Or do a CREATE TABLE from the
SELECT, rename appropriately.

® DELETE just the bad rows by ctid, if you
can isolate them.

Iterate through rows in PL/pgSQL...

... with an exception block around the
SELECT.

Catch and log any rows that throw an
exception.

Very helpful for finding TOAST corruption.

Great and
Desperate Cures.

® All corruption is, by its nature, a one-off
situation.

® Be sure to determine the extent of it
before continuing.

® Be sure you can step backwards!

REMEMBER.

® Are there errors in demsg indicating a
hardware or OS problem!?

® |s the OOM killer terminating backends?
® Disk I/O errors!?

® Can you cp -R the data directory to
/dev/null?

® As in, the backend crashes when it touches
them.

® |solate pages, use dd to zero out those
blocks.

® Be sure to drop and recreate all indexes on
the table!

You went on vacation...
The system ran out of disk space...

And they called you to say that it won’t
start now.

“VWVe just deleted some log files.”

“Which ones?”’

“Pg_XIOg,,

“Is that bad?”’

‘(Yes.”

® Tells PostgreSQL that WAL files it needs
for crash recovery... it doesn’t need.

® Can get the server to start with missing log
files.

® Read the instructions carefully!

® High risk of inconsistent data! Check the
database very thoroughly!

PG::InternalError: ERROR: could not
access status of transaction 2924295225
DETAIL: Could not read from file
"pg_clog/@AE4" at offset 212992:
Success.

pg clog corruption.

® Good news: Rarely subtle.
® Missing file.

® Truncated file.

Replace a missing file with all-zeros file.
00 for a transaction means “in progress.”

Previously-committed transactions can thus
disappear.

Be prepared to do more cleanup in this
case.

® [he nightmare scenario.

® Very hard to recover from, unless the
corruption is very small.

® Probably requires expert attention to do
recovery or scavenging.

War Stories.

PG::InternalError: ERROR: could not
access status of transaction 2924295225
DETAIL: Could not read from file
"pg_clog/@AE4" at offset 212992:
Success.

Network connectivity issue caused
secondary to be promoted to primary.

New secondary couldn’t handle load.

Beefier primary was initialized from
secondary, but...

... On startup, these errors popped out.

® Same network problems that began the
situation caused the rsync building the
primary to abort.

® No one noticed in the rush to get the
primary back on line.

® ... the missing clog file could be copied
from the secondary and dropped into
place.

® Problem solved!

® Very lucky that clog file was available.

® No matter how bad a disaster is...
® ... rushing can make it worse.

® Make sure that you are not introducing
new problems as you are repairing old
ones.

ERROR: missing chunk number @ for
toast value 968442 1n pg_toast_263610

® New primary provisioned by promoting
from secondary.

® Errors started appearing almost
immediately.

® But only one row, on one table...

... and only on some queries.

Isolating the record using primary key
found nothing; the record retrieved just
fine.

Reindexing the TOAST table? No help.

Iterating through the table did find it,
however.

® [wo levels of corruption.

® Bad TOAST entry, and...

® ... two rows with the same primary key.
® One referring to the “bad” row.

® |ndex scans only found the “good” row.

® Seq scans found both.

® Delete the missing row by ctid.

® |terate through all other tables to confirm
no other corrupt rows.

® Read the release notes.

® This was directly related to an existing bug
in PostgreSQL.

® But the hosting provider™ hadn’t upgraded
PostgreSQL promptly.

® * cough AWS cough

Uh, Christophe?
About that upgrade...

® New primary provisioned by promoting
from secondary.

® New primary put into service, old primary
decommissioned.

® Everything looks fine for a few hours,
until...

® Some existing rows are missing.

® Some existing rows are duplicated, as if
both old and new from an UPDATE had
been committed.

® No error messages.

® PostgreSQL bug.
® Since fixed.

® clog values were not properly being
transmitted from primary to secondary
under high-write-load conditions.

® So, some rolled back, etc.

® Enough information in the database (date/
time stamps) to delete the bad rows, and

copy the missing ones from the old
database.

® Hand-crafted scripts to do so.

® Never, ever want to do that again.

® Do not exclude that it could be a
PostgreSQL problem.

® Do thorough sanity checks on promoted
primaries.

® Have a client or employer who understands
open source software.

Thank you!

Christophe Pettus
PostgreSQL Experts, Inc.

pgexperts.com

thebuild.com

christophe.pettus(

Twitter @xof

http://pgexperts.com
http://pgexperts.com

