
Life with Object-Relational Mappers
Or, how I learned to stop worrying and love the ORM.

Christophe Pettus
PostgreSQL Experts, Inc.
cpettus@pgexperts.com

PGCon 2011

mailto:cpettus@pgexperts.com
mailto:cpettus@pgexperts.com

Has this ever happened to you?

• “This query is running way too slowly. God,
RDBMSes suck!”

• “Well, you just need to change the WHERE clause…”

• “I can’t change the SQL. We’re using an…”

ORM

Let’s talk about ORMs.

• What is an ORM?

• Why do we have to put up with them?

• What are they good at?

• What are the problems?

• Can’t we just make them go away?

• No. Sorry.

• How can we live with them?

Oh, right. Hi!

• Christophe Pettus

• Consultant with PostgreSQL Experts, Inc.

• PostgreSQL person since 1998.

• Application and systems architect.

• Designed a bunch of ORMs for various languages.

WHEN WORLDS
COLLIDE.

The Two Worlds

• Object-Oriented Programming.

• Relational Database Management.

Object-Oriented Programming.

• Let’s ask Wikipedia!

• “Object-oriented programming (OOP) is a
programming paradigm using ‘objects’ …”

• Ask three programmers, get five answers.

• “… – data structures consisting of data fields and
methods together with their interactions – to
design applications and computer programs.”

What is the critical OO
feature?

• Data abstraction? Nope.

• Messaging? Nope.

• Modularity? Nope.

• Polymorphism? Nope, but getting warmer.

• Inheritance? Getting colder…

• Encapsulation.

Encapsulation

• Objects export behavior, not data.

• Many language expose the data — but that’s a
shortcut.

• Many objects don’t have significant behavior — but
that’s a degenerate case.

• OO is all about wrapping up the behavior and the
data into a single package, the object.

Object Relationships.

• Object models are collections of graphs.

• Pointers, references, swizzlers, strong refs, weak
refs, lazy refs, blah blah woof woof.

• Ultimately, it is all derived from in-memory
structures that point to each other using memory
references.

The Reference Collection.

• Each object has its own list of references to other
objects.

• The shape of the graph (as opposed to its
contents) is generally an application architecture
decision.

• Collections are not intrinsic to the objects, but are
external structures they can be added to.

Object classes are static.

• Generally, object classes are static for the life of
the application.

• Dynamic languages blah blah woof woof.

• Adding new methods and members to an object is
an application change.

• Run-time classes must be based on existing classes
to allow existing code to make sure of them.

Objects are transient.

• Objects are first and foremost in-memory
structures.

• Object persistence is a layer added on top of the
object model.

• No production OO language assumes
persistence as the default condition.

• Even object databases required some kind of
marking for object persistence.

The OO Paradigm.

• The objects export a set of behavior.

• The application supplies the data that is to exhibit
that behavior.

• If you want different behavior, you need different
objects.

The Relational Model, or
Dr Codd Explains It All To Us.

• The information rule: This rule simply requires
all information to be represented as data values in the
rows and columns of tables. This is the basis of the
relational model.

• Physical data independence: Application
programs must remain unimpaired when any changes
are made a storage representation or access
methods.

• Logical data independence: Changes should
not affect the user’s ability to work with the data.

Data is Primary.

• The RDBMS stores data, and makes it available to
applications.

• It doesn’t know, or care, about the applications
that access it.

• Stored procedures, blah blah woof woof.

• What behavior it has is data-centric, not
application-centric.

Relational Relationships.

• An RDMS has no pre-defined relationships.

• No, not foreign keys.

• Foreign keys declare integrity constraints, and
are only secondarily about “relationships” in a
data sense.

• You can JOIN in any way you wish as long as you
have compatible key types and can get at the data.

Relations are dynamic.

• CREATE TABLE (...);

• SELECT a, b, c FROM x JOIN y ...;

• These both create relations.

• One has a longer lifetime, but there’s otherwise
nothing special about it (logically).

• An RDBMS can’t work without throwing around
anonymous relation types all the time.

Implicit Persistence.

• Databases don’t make much sense without
persistence.

• The default operational model for RDMSes is to
store data.

• Temporary and transient data is a special case.

The Two Worlds

• Mostly static typing system vs extremely dynamic
typing system.

• Encapsulated data vs exposed data.

• Bound behaviors vs external behaviors.

• Explicit persistence vs assumed persistence.

When Worlds Collide.

• ORMs were designed to bridge these two worlds.

• With varying degrees of success.

• Different ORMs approach the problem differently.

• RDBMS-up.

• Application-down.

A VISIT TO PLANET
ORM.

The Problem.

• Application programmer needs to get at data in
relational database.

• Application programmer is handed an SQL manual.

• Application programmer starts writing code…

… that looks like this.

cursor* curs;
curs = db_connection->create_cursor();

customer_order *order = new(customer_order);

if (curs.execute(“SELECT * from customer_order WHERE order_id=123”)) {
 result_set* results;
 results = curs->fetch_results();

 customer_order->order_id = results->fetch_column(“order_id”);
 customer_order->customer_id = results->fetch_column(“customer_id”);
 customer_order->date_placed = results->fetch_column(“date_placed”);
 // ??? Need to finish. First programmer quit to become
 // ??? a tour guide in Slovakia.
}

What we need is an interface
layer.

• A tuple in a database is a collection of fields.

• An object has a collection of members.

• A table is a “type” that defines the fields in a tuple.

• A class is a type that defines the members in an
object.

• This is all kind of starting to make sense!

I know! I know!

• We’ll map a class to a table.

• Each of the columns of the table can be a member
of the instances of that class.

• We can define create and save methods on a base
class or something.

• We can keep some kind of flag as to whether or
not the object maps to a row on disk yet.

• We’ll figure the rest out later.

Who Wouldn’t Rather Write
This?

customer_order* order = customer_order.retrieve(123);
order->cancel();
 // Didn’t want that loser’s business anyway.
order->save();
 // Off for a latte!

PROBLEM SOVLED!

• Just a few details. Really, just a few.

• How do we know how to map the tables to
classes, columns to fields?

• Do we make the user specify whether to create a
new row, or do we do it magically?

• How do we handle joins that are not persistent
tables?

• We’ll figure that out later. How hard can it be?

And then came 1998.

• Java was the language of choice.

• RDBMSes were largely still in the hands of
database architects and administrators.

• Battalions of application programmers starting
writing DB-centric applications.

• And we needed a solution, fast.

• No one in their right mind was going to use J2EE.
So, along came…

The RDBMS Up Approach.

• Pioneered by Hibernate.

• Design the database schema.

• Write mapping files that map columns into object
fields.

• Use the ORM to convert results into collections
of objects.

• Uses its own query language, HQL.

Problem solved, right?
<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping package="eg">
 <class name="Cat"
 table="cats"
 discriminator-value="C">
 <id name="id">
 <generator class="native"/>
 </id>
 <discriminator column="subclass"
 type="character"/>
 <property name="weight"/>
 <property name="birthdate"
 type="date"
 not-null="true"
 update="false"/>
 <property name="color"
 type="eg.types.ColorUserType"
 not-null="true"
 update="false"/>
 <property name="sex"
 not-null="true"
 update="false"/>
 <property name="litterId"
 column="litterId"
 update="false"/>
 <many-to-one name="mother"
 column="mother_id"
 update="false"/>
 <set name="kittens"
 inverse="true"
 order-by="litter_id">
 <key column="mother_id"/>
 <one-to-many class="Cat"/>
 </set>
 <subclass name="DomesticCat"
 discriminator-value="D">
 <property name="name"
 type="string"/>
 </subclass>
 </class>
 <class name="Dog">
 <!-- mapping for Dog could go here -->
 </class>
</hibernate-mapping>

http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd
http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd

Yes and No.

• No tedious object copying.

• Tedious XML files instead.

• Don’t have to learn SQL.

• Do have to learn HQL — which is basically
SQL.

• Can model joins in the XML file.

• Have to create object classes for them.

Annotations!

@Entity
@Tuplizer(impl = DynamicEntityTuplizer.class)
public interface Cuisine {
 @Id
 @GeneratedValue
 public Long getId();
 public void setId(Long id);

 public String getName();
 public void setName(String name);

 @Tuplizer(impl = DynamicComponentTuplizer.class)
 public Country getCountry();
 public void setCountry(Country country);
}

Specify the mapping in the
code!

• No nasty XML files to write.

• One less thing to get wrong.

• Uses introspection to calculate the schema.

• Of course, the schema has to match the object, or
bad things happen.

Can’t we just create the class?

• Examine the schema, create the class from it.

• In the Java era, not easy.

• But then came the dynamic languages!

• Python, Ruby.

The culture was shifting, too.

• More very small startups.

• Application programmers pressed into DBA roles.

• Even less time and interest in learning SQL.

• The database was increasingly viewed as an
application object store rather than a shared data
repository.

Active Record

• Got its name in Martin Fowler’s 2003 book,
Patterns of Enterprise Application Architecture.

• Exemplar: Active Record in Rails.

• Analyzes schema, produces classes.

• Clients of the class need to stay ahead of the
interface.

• Requires a language that can extend classes on the
fly.

Application-Down Approach.

• Exemplar: Django.

• The object model is defined in the application.

• The database is created by the application from
the object model.

• Non-SQL-like query languages.

Look, Ma! No SQL!

from django.db import models

class Poll(models.Model):
 question = models.CharField(max_length=200)
 pub_date = models.DateTimeField('date published')

class Choice(models.Model):
 poll = models.ForeignKey(Poll)
 choice = models.CharField(max_length=200)
 votes = models.IntegerField()

Problem Solved!

• The application writer does not need to learn
SQL.

• Application programmers hate SQL.

• No, really. They hate hate hate SQL.

• They get a place to store their objects with
minimum hassle.

• They get the demo up and running fast.

Even more good news!

• The application is “database independent.”

• You don’t have to hire any of those really
expensive SQL people.

• And, hey, if we’re just stuffing objects into the
database, why do we need SQL at all?

• My dad used to listen to SQL on his 8-track in
his Buick LeSabre.

• Let’s switch to MongoDB! It’s Web-Scale!

WHAT COULD
POSSIBLY GO
WRONG?

A real life case.

• Client complains DB is running too slow.

• Check batch process.

• Does a BEGIN.

• Does a SELECT.

• Does an UPDATE.

• Does a COMMIT.

• 1,235,000 times. Each night.

“I think we found your
problem.”

for order in qs.all():
 order.days_open += 1
 order.save()
 transaction.commit()

Problem 1:
Using the DB as Memory.

• Objects are an in-memory model.

• The database is generally not stored in memory.

• By definition, a persistent store has to write to
persistent storage.

• Just because it’s easy, doesn’t mean it’s fast.

Transaction Mismanagement

address = Address(street_address="1112 E Broad St",
city="Westfield", state="NJ", zip="07090")

address.save()

order = Order(customer_name="Gomez Addams",
shipping_address=address)

order.save()

BEGIN;

INSERT INTO Address VALUES (...);

COMMIT;

BEGIN;

INSERT INTO Order VALUES (...);

COMMIT;

Problem 2:
Weird Transaction Models

• ORMs generally have bizarre transaction
models.

• “Each operation its own transaction”
seems to be a typical default.

• Transaction management tools are often
made to seem like a black art.

Index to Prohibited Features

• “Why don’t you create an index on these
columns?”

• “Full-text search would be more appropriate
here.”

• “PostgreSQL has a built-in POINT type.”

• “You need a trigger to enforce most multi-row
constraints.”

Problem 3:
Limited Functionality

• Does not expose particular functionality.

• Especially if special syntax is required.

• Often claimed to be a feature.

• “Database agnosticism.”

• Requires dropping to raw SQL.

• Application programmers hate SQL.

Helping! I’m helping!

• Client was experiencing deadlocks.

• Deleting a record was deleting all dependent
records across a foreign key.

• Normal right?

• Except that the relationship wasn’t marked ON
CASCADE.

Problem 4:
Excessive Help.

• Django (until the most recent version) did a
manual ON DELETE CASCADE on foreign keys.

• And there was no way to turn it off.

• “Database agnosticism.”

• Why that particular feature? Who knows?

What you see is what you get,
like it or not.

• Client complained a summarization operation was
running too slow.

• Look at the database activity

• SELECT about 125,000 records.

Sure Enough.

total = 0

for order in qs.all():

 total += order.amount

Problem 5:
Bad Reporting Query Support

• Should do a SUM, right?

• Couldn’t return that from a query, because...

• ... each row needs a primary key.

• Can drop down to raw SQL.

• Application programmers hate... oh, you get the
idea.

A Memory Disaster

• Client code queried for all records in a 12 million
row table.

• No problem! Django queries are lazy.

• Touched the first record.

• BANG! Out of memory.

• Traced down through the code. What could be
going on?

Problem 6:
Naïve use of DB interface

• That ORM never uses named cursors.

• So, libpq happily sends over the entire result set
when you ask for the first record.

• No clean way of getting around this…

• … even though the language interface atop libpq
fully supports named queries.

• If it’s not this, it’s something else.

“Don’t Do That, You’ll Kill
Yourself!”

• Client was complaining about high log usage.

• Sure enough, >12GB/hour in logs being generated.

• Some individual queries were nearly 100,000
characters long.

SELECT *

 FROM y

 WHERE z IN (insert a few thousand integers here);

list_of_values = [q.i for q in qs1.all()]

qs2 = Y.filter(z__in=list_o_values)

for y_value in qs2:

 ... becomes

Problem 7:
Feature Mismatch

• Allows for creation of bad queries, easily.

• Without seeing underlying SQL, code looks very
simple.

• A quick look at the log identifies the problem.

• But remember, this client was generating 12
gigabytes of log an hour…

• And still didn’t want to look at SQL.

Bad Idioms

• In Active Record (Rails), referred records in a
foreign key relationship are updated before
referring records.

• This behavior is difficult to override.

• Foreign key deadlocks, anyone?

Problem 8:
Unhelpful Standard Behavior

• The described pattern can cause deadlocks in
PostgreSQL as of 9.x.

• Most application programmers think deadlocks are
something that happens to someone else.

• Can be very difficult to track down.

Why should we care?

• These problems are blamed on the RDBMS, not
the ORM.

• DB administrators and architects are routinely
being called in to solve ORM-related problems.

• ORM-think is one of the primary driving forces
behind the NoSQL movement.

• If the only thing a DB is good for is an object
store, why learn about an RDBMS?

REPAIRING THE
DAMAGE

Fixing ORM Damage.

• Every ORM has its own idiosyncrasies.

• But the patterns of abuse are remarkably similar.

• Some changes will require substantial re-
architecting.

• But some can be repaired quickly.

Pathological Iteration.

• Reading results in, processing them, writing them
back out.

• Storing large result sets in application objects.

• SELECT / UPDATE loops.

• Replace with stored procedures or single UPDATE
statements.

Transaction Maladies.

• Small transactions.

• Transactions left open between requests.

• Transactions that do not completely bracket
atomic sequences.

• All modern ORMs have reasonable transaction
primitives.

• May require a bit of rearchitecture.

Query Train Wrecks.

• Queries with gigantic predicates.

• Bad, automatically-generated JOINs.

• Queries with very large SELECT lists.

• Replace with hand-crafted SQL or stored
procedures, wrapped in an application API.

Join Landslides.

• JOINs done manually in the application.

• ORM syntax for joins tends to be horrible…

• … so application programmers don’t use it.

• Or, they are not thinking in SQL terms.

Cache Disasters.

• All ORMs cache.

• Almost no ORMs do intelligent cache invalidation.

• Do read-after-write if required (triggers, stored
procedures, etc.).

• Replication lag?

Planner Phollies.

• Many ORMs love prepared statements.

• Java-based ORMs seem to particularly love them.

• PostgreSQL plans a prepared query once per
session, and caches the plan...

• ... which is then often wrong for subsequent calls.

• DISCARD PLANS is your friend in these cases.

Index Incidents.

• Columns not indexed, because the ORM syntax
for creating indexes is obscure.

• The wrong kind of indexes, because ORM can’t
create multi-column or functional indexes.

• Too many indexes, because the application
programmer just threw them on everything.

Debugging Tips

• ORM calls can be hard to correlate with database
activity.

• Be liberal with logging calls that indicate where
in the application you are.

• Turn up PG logging. Use pgFouine.

• Remember that ORM operations are usually lazy,
and rarely happen at the point of query.

IS THERE HOPE?

ORMs are not evil.

• They’re invaluable for their core operation of
object persistence.

• We’d have to pry them out of their cold, dead
hands anyway.

• Most of the problems come from the “hammer/
nail” attitude.

• App programmers have been convinced that not
learning SQL is a virtue.

Better ORMs?

• “Better ORMs” are not the answer.

• ORMs have been around since the early 1990s.

• If we could fix it that way, we would have by now.

• Virtually all production ORMs have ways of solving
these problems.

• But we don’t take advantage of them.

Everything can be fixed.

• Technology Fixes.

• Educational Fixes.

• Management Fixes.

Better Application
Architectures

• Don’t have the primary interface to the DB be the
ORM.

• The ORM is a relatively low-level component.

• Push the interface up a level to a more logical one.

• Gives you a rug to sweep the SQL under.

Friendlier Database Design

• Turn the database into an application server.

• Stored procedures.

• Views.

• Use a familiar language for stored procedure
implementation.

• Wrap the nasty SQL up in a sugar coding of
Python or Perl.

• Do background operations outside the ORM
frameworks.

A Few Home Truths

• Web developers tend to be focused on the front-
end OLTP.

• Get them involved in data warehousing and
analysis architecture.

• SQL experts are in-demand and well-
compensated.

• It’s a career development opportunity.

Teach the Controversy

• SQL is taught as a command language like bash.

• Teach the relational model instead.

• Programmers love efficiency.

• Reduce the data, don’t ship it.

• Databases are a discipline, not a priesthood.

Education Fixes.

• Make developers use the production database
system.

• No SQLite on their laptops.

• tail -f the logs so they can see what is really
happening.

• Cheap profiling.

• Teach the relational model, not “SELECT gets the
data.”

Management Fixes

• No application is pure OLTP.

• ORMs are not a data warehousing solution.

• An underused or poorly used RDBMS costs
money.

• Hardware, virtual server time…

• Remember those expensive SQL consultants?

• Bring the skills in-house.

ORMs are great…

• … for the problem they were designed to solve.

• Creating objects out of database rows.

• The pathologies come from pushing them beyond
their design center.

• So, don’t do that.

LEARN TO LOVE THE
ORM

ORMs are tools.

• Very useful in their proper place.

• Painful if you grab the wrong end.

• We need to confront ORMs as they are, not
ORMs as we would like them to be (or not be).

Knowledge is Power.

• As DB experts, it’s our job to understand ORMs.

• Just like we need to understand SQL.

• The better we understand them, the more help we
can provide to application programmers.

• And it’s one more valuable skill in your
professional toolkit.

THANK YOU.

