
Look It Up:  
Real-Life Database Indexing

Christophe Pettus 
PostgreSQL Experts 

PgConf.NYC 2023

Christophe Pettus
CEO, PGX Inc.

 
christophe.pettus@pgexperts.com

twitter @xof

mailto:christophe.pettus@pgexperts.com

Indexes!
• We don’t need indexes.

• By definition!

• An index never, ever changes the actual result that comes
back from a query.

• A 100% SQL Standard-compliant database can have no
index functionality at all.

• So, why bother?

O(N)

O(N)

O(N)
• Without indexes, all queries are sequential scans (at best).

• This is horrible, terrible, bad, no good.

• The point of an index is to turn O(N) into O(something
better than N).

• Ideally O(logN) or O(1)

• But…

Just a reminder.
• Indexes are essential for database performance, but…

• … they do not result in speed improvements in all cases.

• It’s important to match indexes to the particular queries,
datatypes, and workloads they are going to support.

• That being said…

• … let’s look at PostgreSQL’s amazing indexes!

The Toolbox.
• B-Tree.

• Hash.

• GiST.

• GIN.

• SP-GiST.

• BRIN.

• Bloom.

Wow.
• PostgreSQL has a wide and amazing range of index

types.

• Each has a range of queries and datatypes that they work
well for.

• But how do you know which one to use?

• Someone should give a talk on that.

B-Tree.

B-Tree Indexes.
• The most powerful algorithm in computer science whose

name is a mystery.

• Balanced? Broad? Boeing? Bushy? The one that came
after A-Tree indexes?

• Old enough to be your parent: First paper published in
1972.

• The “default” index type in PostgreSQL (and pretty much
every other database, everywhere).

It’s that graphic again.

7 16

9 121 2 18 215 6

By CyHawk - Own work based on https://dl.acm.org/citation.cfm?doid=356770.356776,
 CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11701365

https://dl.acm.org/citation.cfm?doid=356770.356776

So many good things.
• B-Trees tend to be very shallow compared to other tree

structures.

• Shallow structures mean fewer disk page accesses.

• Provide O(logN) access to leaf notes.

• Easy to walk in ordered directions, so can help with
ORDER BY, merge joins…

B-Trees, PostgreSQL Style.
• PostgreSQL B-Trees have a variable number of keys per

node…

• … since PostgreSQL has a wide range of indexable
types.

• Entire key value is copied into the index.

• Larger values means fewer keys per node, so deeper
indexes.

Recent Improvements
• Significant improvements to B-Tree structure.

• Smaller indexes, especially with many duplicate keys.

• Requires that the index be reconstructed if it exists
already.

• A quick REINDEX CONCURRENTLY will handle it.

Perfect! We’re Done.
• Not so fast.

• “Entire key value is copied into the index.”

• Not good (or not available) for long data types.

• Requires a totally-ordered type (one that supports =, <, >
for all values).

• Many, many datatypes are not totally-ordered.

Hash.

Hash Indexes.
• Converts the input value to a 32-bit hash code.

• Hash table points to buckets of row pointers.

• Works on data of arbitrary length.

Making a hash of it.
• Only supports one operator: =.

• But that’s a pretty important operator.

• Indexes are smaller than B-Tree, especially for large key
values.

• Access can be faster, too, if there are few collisions.

• Great for long values on which equality is the primary
operation.

• URLs, long hash values (from other algorithms), etc.

GiST.

GiST Indexes.
• GiST is a framework, not a specific index type.

• GiST is a generalized framework to make it easy to write
indexes for any data type.

• What a GiST-based index does depends on the particular
type being indexed.

• For example:

x

y

=?

>?

<?

@>

Generalized Search Tree.
• Can be used for any type where “containment” or

“proximity” is a meaningful operation.

• Standard total ordering can be considered a special
case of proximity[citation required].

• Ranges, geometric types, text trigrams, etc., etc…

• Not as efficient as B-Tree for classic scalar types with
ordering, or for simple equality comparisons.

GIN.

General Inverted iNdex.
• Both B-Tree and GiST perform poorly where there are lots

and lots of identical keys.

• However, full text search (as the most classic case) has
exactly that situation.

• A (relatively) small corpus of words with a (relatively) large
number of records and positions that contain them.

• Thus, GIN!

A Forest of Trees.
• GIN indexes organize the keys (e.g., normalized words)

into a B-Tree.

• The “leaves” of the B-Tree are lists or B-Trees themselves
of pointers to rows that hold them.

• Scales very efficiently for a large number of identical keys.

• Full-text search, indexing array members and JSON
keys, etc.

SP-GiST.

Space Partitioning GiST.
• Similar to GiST in concept: A framework for building

indexes.

• Has a different range of algorithms for partitioning than
“classic” GiST.

• Designed for situations where a classic GiST index would
be highly unbalanced.

• More later!

BRIN.

Block-Range INdex.
• B-Tree indexes can be very large.

• Not uncommon for the indexes in a database to exceed
the size of the heap.

• B-Trees assume we know nothing about a correlation
between the index key and the location of the row in the
table.

• But often, we do know!

created_at timestamptz
default now()

• Tables that are INSERT-heavy often have monotonically
increasing keys (SERIAL primary keys, timestamps)…

• … and if the tables are not UPDATE-heavy, the key will be
strongly correlated with the position of the row in the
table.

• BRIN takes advantage of that.

BRIN it on.
• Instead of a tree of keys, records ranges of keys and

pages that (probably) contain them.

• Much, much smaller than a B-Tree index.

• If the correlation assumption is true, can be much faster
to retrieve ranges (like, “get me all orders from last year”)
than a B-Tree.

• Not good for heavily-updated tables, small tables, or
tables without a monotonically-increasing index key.

Bloom.

Bloom Filters
• Like a hash, only different!

• Most useful for indexing multiple columns at once.

• Very fast for multi-column searches.

• Multiple attributes, each expressed as its own column.

• A small fraction of the size of multiple B-Tree indexes.

• Potentially faster for a large number of attributes.

Pragmatic Concerns

Do you need an
index at all?

• Indexes are expensive.

• Slow down updates, increase disk footprint size, slow
down backups / restores.

• As a very rough rule of thumb, an index will only help if
less than 15-20% of the table will be returned in a query.

• This is the usual reason that the planner isn’t using a
query.

Good Statistics.
• Good planner statistics are essential for proper index usage.

• Make sure tables are getting ANALYZEd and VACUUMed.

• Consider increasing the statistics target for specific columns
that have:

• A lot of distinct values.

• More distribution than 100 buckets can capture (UUIDs,
hex hash values, tail-entropy text strings).

• Don’t just slam up statistics across the whole database!

Bad Statistics.
• 100,000,000 rows, 100 buckets, field is not UNIQUE,

25,000 distinct values.

• SELECT * FROM t WHERE sensor_id=‘38aa9f2c-3e5d-4dfe-9ed7-e136b567e4e2’

• Planner thinks 1m rows will come back, and may decide
an index isn’t useful here.

• Setting statistics higher will likely generate much better
plans.

Indexes and MVCC.
• Indexes store every version of a tuple until VACUUM

cleans up dead ones.

• The HOT optimization helps, but does not completely
eliminate this.

• This means that (in the default case) index scans have to
go out to the heap to determine if a tuple is visible to the
current transaction.

• This can significantly slow down index scans.

Index-Only Scans.
• If we know that every tuple on a page is visible to the

current transaction, we can skip going to the heap.

• PostgreSQL uses the visibility map to determine this.

• If the planner thinks “enough” pages are completely
visible, it will plan an Index-Only Scan.

• Nothing you have to do; the planner handles this.

• Except: Make sure your database is getting
VACUUMed properly!

Lossy Index Scans.
• Some index scans are “lossy”: It knows that some tuple in

the page it is getting probably matches the query
condition, but it’s not sure.

• This means that it has to retrieve pages and scan them
again, throwing away rows that don’t match.

• Bitmap Index Scan / Bitmap Heap Scan are the most
common type of this…

• … although some index types are inherently lossy.

Covering Indexes.
• Queries often return columns that aren’t in the indexed

predicates of the query.

• Traditionally, PostgreSQL had to fetch the tuple from the
heap to get those values (after all, they aren’t in the index!).

• Non-indexed columns can be added to the index…
retrieved directly when the index is scanned.

• Doesn’t help on non-Index Only Scans, and remember:
you are increasing the index size with each column you
add.

GIN Posting.
• GIN indexes are very fast to query, but much slower to

update than other types of index.

• PostgreSQL records changes in a separate posting area,
and updates the index at VACUUM time (or on demand).

• This can result in a surprising spike of activity on heavily-
updated GIN indexes.

• Consider having a separate background process that
calls gin_clean_pending_list().

UNIQUE indexes.
• B-Trees support unique indexes.

• Optimistic insertion with recovery on index conflicts is a
perfectly fine application development strategy.

• ON CONFLICT … makes this much easier.

• This can be a concurrency-killer, so don’t expect very high
insertion rates in the face of conflicts.

• Exclusion constraints provide a generalization of UNIQUE
(“only one value that passes this comparison is allowed in
this table”).

Is this
a decision

tree?

Is this
a decision

tree?

Is this
a decision

tree?

Yes.

What index?
• How do we decide what index to use in a particular

situation?

• First, gather some information:

• Typical queries on the table.

• The columns, data types, and operators that are being
queried.

• Including those in JOINs.

• How many rows the queries typically return.

How many rows?
• Does the query typically return a large percentage of the

table?

• Including “hidden” row fetches, such as COUNT(*).

• If so… an index probably won’t help!

• Refactor the query, consider summary tables or other
techniques before just throwing an index at the problem.

• Small tables that fit in memory usually don’t need indexes
at all, except to enforce constraints.

Which column?
• In a multi-predicate query, which column?

• Always start with the most selective predicate.

• That is, the one that will cut down the number of rows
being considered the most.

• If the predicates individually don’t cut the results down
much, but do so together, that’s a good sign a multi-
column index will be useful.

• But first, let’s consider a single column.

Is the column a small
scalar?

• int, bigint, float, UUID, datetime(tz)… (but see later for inet and char types).

• UUIDs have special considerations in B-tree indexes.

• Is the value a primary key or otherwise UNIQUE?

• If so, B-Tree.

• Is it monotonically increasing on a large, rarely updated table, and the query is
doing a range operation?

• If so, BRIN.

• Otherwise, B-Tree.

• If the index is primarily to support ORDER BY … DESC, create as descending;
otherwise, ascending.

Is the column a text field?
• varchar(), text, or char (if you’re weird).

• Are you doing full-text search, trigrams, or other fuzzy search techniques?

• Trick question! See later.

• Is the data structured (and prefix-heavy) and you are typically doing prefix
searches? (URLs are a typical case here.)

• Consider SP-GiST.

• Is the value generally small (< 200 characters), or do you require total ordering?

• If so, B-Tree.

• Otherwise, consider a Hash index.

Is the column a bytea?
• Why are you indexing a bytea?

• Don’t do this.

• Please.

• If you must, use Hash or calculate a hash and store it
separately.

Is the column a range or
geometric type?

• GiST is there for you.

• PostGIS indexes are all GiST-based.

• If you need nearest-neighbor searching, GiST for sure.

• The “Starbucks problem.”

• Experiment with SP-GiST to see if it is a good fit for your
data distribution.

Is the column type inet?
• Are you just doing equality?

• B-Tree

• (Try Hash to see if it works better for you.)

• Are you doing prefix searches?

• Consider SP-GiST.

Is the column an array or
JSONB?

• Are you just doing equality?

• Hash.

• Are you searching for key values?

• GIN.

Is the column JSON-no-B?
• Why is the column JSON?

• Expression index is the only option here.

• If you need indexing, far better to convert it to JSONB.

Are you doing full-text or
fuzzy search?

• Full text search: Create a tsvector from the text, and
create a GIN index on that.

• Either store as a separate column, or use an expression
index.

• Separate columns are better for complex tsvector
creation.

• Fuzzy search: Create an index on the column using
gist_trgm_ops (part of the pg_trgm contrib package).

Is there more than one
column in the predicate?

• Consider creating a multi-column index, if the predicates
together are highly selective.

• Remember that in an index on (A, B), PostgreSQL will
(almost!) never use it for just a search on B.

• Find the right index type for each column individually, and
create the index based on the most selective column.

• If one column requires a GiST index, you can use the
btree_gist package to get GiST operators for basic scalar
types.

Is there more than one
column in the predicate?

• If the query pattern is an arbitrary equality comparison of
the various columns, consider a Bloom index.

• Not uncommon with a GUI-driven search filter.

• If the predicates are selective independently, two indexes
might be superior… test!

Does the query contain an
expression?

• Consider creating an expression index.

• For example, an index on unaccent(lower(name)) instead of
querying on it.

• Don’t forget the citext type for the lower() problem,
though.

• Be sure that particular expression is very heavily queried.

• If you index on a user-written function, make sure it really
is IMMUTABLE, not just declared that way.

Is one predicate highly
selective?

• SELECT * FROM orders WHERE customer_id = 12 AND active;

• … where only 10% of orders are “active”.

• Consider creating a partial index.

• CREATE INDEX ON orders(customer_id) WHERE active;

• Only contains the rows that match the predicate.

• Can significantly speed up index queries.

Tools.

Do we need an index?
• pg_stat_user_tables.

• Look for tables with a significant number of sequential
scans.

• Not all sequential scans are bad! Dig into the particular
queries, look at their execute plans.

• pg_stat_statements, the text logs, and pgbadger are your
friends here.

Will an index help?
• https://github.com/HypoPG/hypopg

• Allows creation of “hypothetical” indexes.

• Create index, EXPLAIN the query, see if it is being used.

• “Being used” and “makes the query faster” are not always
the same thing.

• RDS, at least, supports it.

https://github.com/HypoPG/hypopg

Is the index being used?
• pg_stat_user_indexes.

• Look for indexes that aren’t being used.

• Drop indexes that aren’t benefiting you.

• Indexes have a large intrinsic cost in disk space and
UPDATE/INSERT time.

• https://github.com/pgexperts/pgx_scripts/blob/master/
indexes/unused_indexes.sql

Are indexes bloated?
• Indexes can suffer from bloat.

• VACUUM can’t always reclaim space efficiently, due to
index structure.

• Periodic index rebuilds are worth considering.

• https://github.com/pgexperts/pgx_scripts/blob/master/
bloat/index_bloat_check.sql

https://github.com/pgexperts/pgx_scripts/blob/master/bloat/index_bloat_check.sql
https://github.com/pgexperts/pgx_scripts/blob/master/bloat/index_bloat_check.sql

Are indexes corrupted?
• It doesn’t happen often, but it does happen.

• Errors during queries, etc.

• PostgreSQL 10+ has amcheck.

• Easy to fix! Drop and recreate the index.

To Conclude

Indexes are great.
• Remember that they are an optimization.

• Always create in response to particular query situations.

• Experiment! Test different index types to see what works
best.

• Pick the right index type for the data… don’t just go with
B-Tree by default.

• Monitor usage and size to keep the database healthy and
trim.

Thank you!

Questions?

Christophe Pettus
CEO, PostgreSQL Experts, Inc.

 
christophe.pettus@pgexperts.com

twitter @xof

thebuild.com

mailto:christophe.pettus@pgexperts.com
http://thebuild.com

