Look It Up:
Real-Life Database Indexing

Christophe Pettus
PostgreSQL Experts
PgConf.NYC 2023



Christophe Pettus

CEO, PGX Inc.

christophe.pettus@pgexperts.com

twitter @xof


mailto:christophe.pettus@pgexperts.com

Indexes!

We don’t need indexes.
By definition!

An index never, ever changes the actual result that comes
back from a query.

A 100% SQL Standard-compliant database can have no
index functionality at all.

So, why bother?









O(N)

Without indexes, all queries are sequential scans (at best).
This is horrible, terrible, bad, no good.

The point of an index is to turn O(N) into O(something
better than N).

e |deally O(logN) or O(1)

But...



Just a reminder.

Indexes are essential for database performance, but...
... they do not result in speed improvements in all cases.

It’s important to match indexes to the particular queries,
datatypes, and workloads they are going to support.

That being said...

... let’s look at PostgreSQL’s amazing indexes!



The Toolbox.

e B-Tree.

e Hash.

e GIST.

* GIN.

e SP-GIST.

 BRIN.

e Bloom.



Wow.

PostgreSQL has a wide and amazing range of index
types.

Each has a range of queries and datatypes that they work
well for.

But how do you know which one to use?

Someone should give a talk on that.












B-Tree Indexes.

 The most powerful algorithm in computer science whose
name is a mystery.

 Balanced? Broad? Boeing? Bushy? The one that came
after A-Tree indexes?

 Old enough to be your parent: First paper published in
1972.

e The “default” index type in PostgreSQL (and pretty much
every other database, everywhere).



's that graphic again.

By CyHawk - Own work based on https://dl.acm.org/citation.cfm?doid=356770.356776,

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11701365


https://dl.acm.org/citation.cfm?doid=356770.356776

S0 many good things.

 B-Trees tend to be very shallow compared to other tree
structures.

e Shallow structures mean fewer disk page accesses.
* Provide O(/logN) access to leaf notes.

 Easy to walk in ordered directions, so can help with
ORDER BY, merge joins...



B-Trees, PostgreSQL Style.

 PostgreSQL B-Trees have a variable number of keys per
node...

e ... since PostgreSQL has a wide range of indexable
types.

* Entire key value is copied into the index.

e |arger values means fewer keys per node, so deeper
Indexes.



Recent Improvements

Significant improvements to B-Tree structure.
Smaller indexes, especially with many duplicate keys.

Requires that the index be reconstructed if it exists
already.

A quick REINDEX CONCURRENTLY will handle it.



Perfect! We’'re Done.

* Not so fast.
 “Entire key value is copied into the index.”
* Not good (or not available) for long data types.

 Requires a totally-ordered type (one that supports =, <, >
for all values).

* Many, many datatypes are not totally-ordered.






Hash Indexes.

e Converts the input value to a 32-bit hash code.
 Hash table points to buckets of row pointers.

 Works on data of arbitrary length.



Making a hash of It.

Only supports one operator: =.
e But that’s a pretty important operator.

Indexes are smaller than B-Tree, especially for large key
values.

e Access can be faster, too, if there are few collisions.

Great for long values on which equality is the primary
operation.

* URLs, long hash values (from other algorithms), etc.






GiST Indexes.

GiST is a framework, not a specific index type.

GiST is a generalized framework to make it easy to write
indexes for any data type.

What a GiST-based index does depends on the particular
type being indexed.

For example:





















Generalized Search Tree.

e Can be used for any type where “containment” or
“proximity” is a meaningful operation.

e Standard total ordering can be considered a special
case Of prOxirni.ty[ci’cation required].

* Ranges, geometric types, text trigrams, etc., etc...

* Not as efficient as B-Tree for classic scalar types with
ordering, or for simple equality comparisons.






General Inverted INdex.

 Both B-Tree and GiST perform poorly where there are lots
and lots of identical keys.

e However, full text search (as the most classic case) has
exactly that situation.

* A (relatively) small corpus of words with a (relatively) large
number of records and positions that contain them.

* Thus, GIN!



A Forest of Trees.

 GIN indexes organize the keys (e.g., normalized words)
into a B-Tree.

e The “leaves” of the B-Tree are lists or B-Trees themselves
of pointers to rows that hold them.

e Scales very efficiently for a large number of identical keys.

e Full-text search, indexing array members and JSON
keys, etc.






Space Partitioning GiST.

e Similar to GIiST in concept: A framework for building
indexes.

 Has a different range of algorithms for partitioning than
“classic” GiST.

* Designed for situations where a classic GiST index would
be highly unbalanced.

e More later!






Block-Range INdex.

» B-Tree indexes can be very large.

e Not uncommon for the indexes in a database to exceed
the size of the heap.

* B-Trees assume we know nothing about a correlation
between the index key and the location of the row in the
table.

e But often, we do know!



created_at timestamptz
default now()

 Tables that are INSERT-heavy often have monotonically
increasing keys (SERIAL primary keys, timestamps)...

e ... and if the tables are not UPDATE-heavy, the key will be

strongly correlated with the position of the row in the
table.

 BRIN takes advantage of that.



BRIN it on.

Instead of a tree of keys, records ranges of keys and
pages that (probably) contain them.

Much, much smaller than a B-Tree index.

If the correlation assumption is true, can be much faster
to retrieve ranges (like, “get me all orders from last year”)
than a B-Tree.

Not good for heavily-updated tables, small tables, or
tables without a monotonically-increasing index key.






Bloom Filters

Like a hash, only different!

Most useful for indexing multiple columns at once.
Very fast for multi-column searches.

o Multiple attributes, each expressed as its own column.
A small fraction of the size of multiple B-Tree indexes.

* Potentially faster for a large number of attributes.






Do you need an
iIndex at all?

* |ndexes are expensive.

 Slow down updates, increase disk footprint size, slow
down backups / restores.

 As a very rough rule of thumb, an index will only help if
less than 15-20% of the table will be returned in a query.

 This is the usual reason that the planner isn’t using a
query.



Good Statistics.

Good planner statistics are essential for proper index usage.
Make sure tables are getting ANALYZEd and VACUUMed.

Consider increasing the statistics target for specific columns
that have:

e A lot of distinct values.

e More distribution than 100 buckets can capture (UUIDs,
hex hash values, tail-entropy text strings).

Don’t just slam up statistics across the whole database!



Bad Statistics.

e 100,000,000 rows, 100 buckets, field is not UNIQUE,
25,000 distinct values.

e SELECT * FROM t WHERE sensor_1d='38aa9f2c-3e5d-4dfe-9ed7-e136b567e4e2’

* Planner thinks 1m rows will come back, and may decide
an index isn’t useful here.

e Setting statistics higher will likely generate much better
plans.



Indexes and MVCC.

* Indexes store every version of a tuple until VACUUM
cleans up dead ones.

e The HOT optimization helps, but does not completely
eliminate this.

 This means that (in the default case) index scans have to

go out to the heap to determine if a tuple is visible to the
current transaction.

e This can significantly slow down index scans.



Index-Only Scans.

If we know that every tuple on a page is visible to the
current transaction, we can skip going to the heap.

PostgreSQL uses the visibility map to determine this.

If the planner thinks “enough” pages are completely
visible, it will plan an Index-Only Scan.

Nothing you have to do; the planner handles this.

 Except: Make sure your database is getting
VACUUMed properly!



Lossy Index Scans.

Some index scans are “lossy”: It knows that some tuple in
the page it is getting probably matches the query
condition, but it’'s not sure.

This means that it has to retrieve pages and scan them
again, throwing away rows that don’t match.

Bitmap Index Scan / Bitmap Heap Scan are the most
common type of this...

... although some index types are inherently lossy.



Covering Indexes.

e (Queries often return columns that aren’t in the indexed
predicates of the query.

e Traditionally, PostgreSQL had to fetch the tuple from the
heap to get those values (after all, they aren’t in the index!).

e Non-indexed columns can be added to the index...
retrieved directly when the index is scanned.

* Doesn’t help on non-Index Only Scans, and remember:

you are increasing the index size with each column you
add.



GIN Posting.

GIN indexes are very fast to query, but much slower to
update than other types of index.

PostgreSQL records changes in a separate posting area,
and updates the index at VACUUM time (or on demand).

This can result in a surprising spike of activity on heavily-
updated GIN indexes.

Consider having a separate background process that
calls gin_clean_pending_list().



UNIQUE indexes.

B-Trees support unigue indexes.

Optimistic insertion with recovery on index conflicts is a
perfectly fine application development strategy.

e ON CONFLICT ... makes this much easier.

This can be a concurrency-Kkiller, so don’t expect very high
Insertion rates in the face of conflicts.

Exclusion constraints provide a generalization of UNIQUE
(“only one value that passes this comparison is allowed in
this table”).



Is this
a decision
tree?



Is this
a decision
tree?




Is this
a decision
tree?




What index?

How do we decide what index to use in a particular
situation?

First, gather some information:
e Jypical queries on the table.

* The columns, data types, and operators that are being
queried.

* Including those in JOINSs.

e How many rows the queries typically return.



How many rows?

Does the query typically return a large percentage of the
table?

e Including “hidden” row fetches, such as COUNT(").
If so... an index probably won’t help!

Refactor the query, consider summary tables or other
techniques before just throwing an index at the problem.

Small tables that fit in memory usually don’t need indexes
at all, except to enforce constraints.



Which column?

In a multi-predicate query, which column?
Always start with the most selective predicate.

e That is, the one that will cut down the number of rows
being considered the most.

If the predicates individually don’t cut the results down
much, but do so together, that’s a good sign a multi-
column index will be useful.

But first, let’s consider a single column.



Is the column a small
scalar?

int, bigint, float, UUID, datetime(tz)... (but see later for inet and char types).
e UUIDs have special considerations in B-tree indexes.

Is the value a primary key or otherwise UNIQUE?
e |f so, B-Tree.

Is it monotonically increasing on a large, rarely updated table, and the query is
doing a range operation?

e |f so, BRIN.
Otherwise, B-Tree.

e [f the index is primarily to support ORDER BY ... DESC, create as descending;
otherwise, ascending.



Is the column a text field?

e varchar(), text, or char (if you’re weird).
* Are you doing full-text search, trigrams, or other fuzzy search techniques?
e Trick question! See later.

* |s the data structured (and prefix-heavy) and you are typically doing prefix
searches? (URLs are a typical case here.)

* Consider SP-GiST.
* |s the value generally small (< 200 characters), or do you require total ordering?
e |f so, B-Tree.

e Otherwise, consider a Hash index.



|s the column a bytea?

Why are you indexing a bytea?
Don’t do this.
Please.

If you must, use Hash or calculate a hash and store it
separately.



Is the column a range or
geometric type?

GiST is there for you.

PostGIS indexes are all GiST-based.

If you need nearest-neighbor searching, GiST for sure.
e The “Starbucks problem.”

Experiment with SP-GIST to see if it is a good fit for your
data distribution.



Is the column type inet?

* Are you just doing equality?

e B-Tree

e (Try Hash to see if it works better for you.)
* Are you doing prefix searches?

e Consider SP-GIST.



Is the column an array or
JSONB?

* Are you just doing equality?

e Hash.

* Are you searching for key values?

e GIN.



Is the column JSON-no-B?

e Why is the column JSON?
 Expression index is the only option here.

* |If you need indexing, far better to convert it to JSONB.



Are you doing full-text or
fuzzy search?

e Full text search: Create a tsvector from the text, and
create a GIN index on that.

e Either store as a separate column, or use an expression
Index.

 Separate columns are better for complex tsvector
creation.

 Fuzzy search: Create an index on the column using
gist_trgm_ops (part of the pg_trgm contrib package).



Is there more than one
column In the predicate?

Consider creating a multi-column index, if the predicates
together are highly selective.

Remember that in an index on (A, B), PostgreSQL will
(almost!) never use it for just a search on B.

Find the right index type for each column individually, and
create the index based on the most selective column.

If one column requires a GiST index, you can use the
btree_gist package to get GiST operators for basic scalar

types.



Is there more than one
column In the predicate?

e |f the query pattern is an arbitrary equality comparison of
the various columns, consider a Bloom index.

e Not uncommon with a GUI-driven search filter.

* |f the predicates are selective independently, two indexes
might be superior... test!



Does the query contain an
expression?

Consider creating an expression index.

For example, an index on unaccent(lower(name)) instead of
querying on it.

 Don’t forget the citext type for the lower () problem,
though.

Be sure that particular expression is very heavily queried.

If you index on a user-written function, make sure it really
Is IMMUTABLE, not just declared that way.



Is one predicate highly
selective?

e SELECT * FROM orders WHERE customer_1d = 12 AND active;
e ... where only 10% of orders are “active”.
 Consider creating a partial index.
e CREATE INDEX ON orders(customer_id) WHERE active;

* Only contains the rows that match the predicate.

e (Can significantly speed up index queries.






Do we need an index?

pg_stat_user_tables.

Look for tables with a significant number of sequential
scans.

Not all sequential scans are bad! Dig into the particular
queries, look at their execute plans.

pg_stat_statements, the text logs, and pgbadger are your
friends here.



Will an index help?

https://github.com/HypoPG/hypopg

Allows creation of “hypothetical” indexes.
Create index, EXPLAIN the query, see if it is being used.

“Being used” and “makes the query faster” are not always
the same thing.

RDS, at least, supports it.


https://github.com/HypoPG/hypopg

Is the index being used?

e pg stat_user_indexes.

ook for indexes that aren’t being used.
 Drop indexes that aren’t benefiting you.

* |ndexes have a large intrinsic cost in disk space and
UPDATE/INSERT time.

e https://github.com/pgexperts/pgx_scripts/blob/master/
indexes/unused_indexes.sql



Are indexes bloated?

Indexes can suffer from bloat.

VACUUM can’t always reclaim space efficiently, due to
index structure.

Periodic index rebuilds are worth considering.

https://github.com/pgexperts/pgx_scripts/blob/master/
bloat/index_bloat check.sql



https://github.com/pgexperts/pgx_scripts/blob/master/bloat/index_bloat_check.sql
https://github.com/pgexperts/pgx_scripts/blob/master/bloat/index_bloat_check.sql

Are indexes corrupted?

e |t doesn’t happen often, but it does happen.
e Errors during queries, etc.
* PostgreSQL 10+ has amcheck.

e Easy to fix! Drop and recreate the index.



—-—— N o AW RN

. ‘ - N T Ny e
J _.'

"To Co.ncl'ude. .
va ~ -




Indexes are great.

Remember that they are an optimization.
Always create in response to particular query situations.

Experiment! Test different index types to see what works
best.

Pick the right index type for the data... don’t just go with
B-Tree by default.

Monitor usage and size to keep the database healthy and
trim.



—-—— N o AW RN

N T Ny tre




—-—— N o AW RN

N T Ny tre




Christophe Pettus

CEO, PostgreSQL Experts, Inc.

christophe.pettus@pgexperts.com

twitter @xof

thebuild.com



mailto:christophe.pettus@pgexperts.com
http://thebuild.com

