* "

2 ol -~
- - - B v :‘~
"t .
-~
r

e SRR S

Why is PostgreSQL Terrible?

Christophe Pettus
PostgreSQL Experts
Nordic PGDay 2018



Christophe Pettus

CEO, PostgreSQL Experts, Inc.

christophe.pettus@pgexperts.com

thebuild.com

twitter @xof


mailto:christophe.pettus@pgexperts.com
http://thebuild.com

"It's more of a comment..."



‘71'It's more of a comment..."

¢ N
!

1. -

h 8 W\' . T X

s
»



”H.»h...ﬁ)..vr...\\i, v
s 0 %Ay B VAs B han .obo-.n."vb".’l. N

- v >
ll/ ~ -— .l!"-’ - - ,.. : Tond s 4




Why is PostgreSQL
terrible?



Spoiler Alert!



It’s not.



- - - - . -



Thanks for coming!



So, what is this?

The most common pain points we hear from customers.
A field report.

Not edited for ease of solving the problem.

Freely concede that some of these will be very hard to fix.

But the customer is always right!



A bit about PGX

San Francisco (area)-based consultancy, since 2009.
Hundreds of clients over the life of the company.
Dozens of active clients.

Primarily focused, ad hoc engagements.

Companies from one-person startups to Fortune 5;
databases from 10MB to multiple petabytes.



A bit about me.

A DBA with a lot of developer experience.

e (wrote an entire SQL RDBMS in C++ once.)
PostgreSQL user since 1 6.5!

e That’s before foreign key constraints.
PostgreSQL consultant for 10+ years.

PostgreSQL is my life!



g B

o
St h 3
.ﬁ&.v.“- 3 ~
- Fa7 » b,
. >y .\.J(

i--_
S e
g

el LA
SR
~ A e
n‘-f' >
. )A.. e § 4
- L = h
— Ty,




AR 2\

A




No bikeshedding!

“This is solved by third-party tool x.”

* Worthy tools, but we’re focusing on community
PostgreSQL here.

“This would be very hard and you can’t do it because of
architecture / resources / malignant influence of the moon.”

 We said that about SERIALIZABLE.
“This is being worked on!”

o (Great!



Query Planning



PostgreSQL’s query
planning Is great.

But to most application developers, it’'s a random number
generator.

Query optimization is an experimental art, and requires a
lot of trial-and-error.

There’s very little visibility into exactly why the query
planner chose the precise execution plan it did.

Optimizing complex queries can be very difficult,
especially in a test or staging environment.



Things that are hard to
explain.

*Why isn’t it using an index?”
*Why can’t | explain to it that the query plan is wrong?”

"Why didn’t it collect statistics on the sequential scan it
just did?”

“How can | tell how this query is going to be planned on a
much larger database?”



Query “tuning” parameters.

e No longer connected to anything real.
e Spinning disk parameters in an SSD/SAN world.

e Requires tribal knowledge, back-engineering, and just
fooling around until something works...

e ... and hope it doesn’t break as the database grows.



What I'd like.

Abllity to trace the query planning process.

Ability to produce plans for theoretical database sizes and
distributions.

Experiential evidence gathered during query execution fed
back into the query planning process.

Whisper it:
e But hints in a PostgreSQL-type way.

* More insight into the data, not “walk this way.”






Everyone blames VACUUM
for everything all the time.

The two most common initial requests are “adding
indexes” and “tuning VACUUM.”

It’s almost never VACUUM.
That being said, VACUUM is very hard to tune.

The current set of tuning parameters are pure guesswork,
and far too focused on the underlying implementation.

When VACUUM goes wrong, it goes really wrong.



What we want.

Flexible resource caps based on real-world parameters (“no
more than x% of system resources”), with emergency fallbacks.

Better solutions for high-update situations.

e More work done at update time, to reduce the amount of
bulk VACUUM activity.

Parallel VACUUM on large tables.

Better (=any) autovacuum prioritization.

Or no VACUUM at all, but one step at a time.



Database
Functionality



Htgbase

- -a <

Functionial ty

<




Everyone Loves
PostgreSQL.

Everyone is very happy with core database functionality.
New features are appreciated and adopted...

e ... but the lack of them is almost never a source of
complaints.

No one ever rejects or moves away from PostgreSQL
because of core engine functionality.

It’s always an operations problem.



Upgrades



) ——

PostgreSQL
upgrades are terrible.

—




The options are:

Dump/restore — Impractical with real-life databases.

pPg_upgrade — Does the job, but weird gotchas and
unexpected behaviors, not great interaction with
secondaries.

Slony/Bucardo/etc. — Weird and fiddly, imposes
requirements on the schema, and load on the source.

pglogical — Requires 9.4+, imposes requirements on the
schema, and is not bug-free.



S0 many problems.

e Entire streaming replica clusters must be upgraded
together.

e P|TR backups are not restorable into the new version,
making them of reduced value.

e Every PostgreSQL extension creates a new place for
upgrade to falil.

e “Oh, an upgrade across those versions is easy, we’ll
just use pg_upgrade oh you’re running PostGIS?”



What we want.

e Major version upgrades that are just like minor version
upgrades.

e \/ersion-aware disk format.

e For many customers, even the “bounce” for a minor
version upgrade requires extensive planning.

e This is why large sites often stay on EOL’d versions.

e 15TB database on 8.1 (and Solaris).



Connection
Management



Let’s be honest.

e Most application stacks have terrible connection
management.

e The reaction to running out of connections is to kick up
max_connections until the problem goes away.

e “Just set max_connections to 25000 we’ll sort it out
later.”

e And then watch as the database server melts down when
too many connections become active at once.



PgBouncer, right?

Yeah sure fine.
One more moving piece...

... with its own high availability (and monitoring, and
deployment, etc.) story.

Single-threaded, and can easily become the bottleneck
under high connection churn and query rates.

Problematic for environments with many different
databases, or database roles.



What we want.

e PgBouncer-like multithreaded event based connection
management in core.

e And a pony, while you're at it.

e A (possibly optional) layer on top of the existing backend
model.

e Ability to switch database and role without re-forking a
back end.



High Availability * |

g 4 "339

- |

' p"t""f»
st ARN
AL DWES
ALt S
— -

. 'I_’ }‘D. _'

¥




The PostgreSQL HA Story.

“Add a streaming replica.”

“Add um some up-front component that handles routing
to the active server mumble mumble PGPool.”

“Write a bunch of scripts to handle instance replacement
and provisioning.”

“Problem solved!”



This Is a terrible story.

Requires third-party tools of varying degrees of quality,
history, and community support.

e Some are great, don’t get me wrong!
Requires scripting and configuration.

Often does not solve important problems (reprovisioning,
etc.).

Streaming replication has an inherent tradeoff between
useful-for-load-balancing and useful-for-failover.



What we want.



AWS RDS



Amazon RDS solves this
out of the box.

e RDS’ high availability story is the strongest single driver
towards RDS adoption.

* RDS has a lot of negatives as a product.

e Black box performance, Amazon lock-in, version lag,
upgrade strangeness, expense...

e But the HA story is complete, easy to understand, and
easy to integrate into an application stack.



A proper solution needs to
provide...

A single consistent endpoint for the application to connect to.

Load balancing to amortize the cost of the secondaries.

Replacement of failed nodes.

In a perfect world, aborted transactions rather than broken
connections.

A library of pre-packaged scripts for common environments
(AWS, OpensStack...).

A framework for scripting to handle bespoke environments.



Scaling



The out-of-the-box
scaling solution.



7

|\

\

S

— —— -_ e »
- - - y ” -
/

e N AR

N

e r Ty T e I AT T

ek ==Y ) 1 Ve

]
l
1
VoL
foesr 4
an

\ —

S~ 29
S ~———
g g

—e

e

[

-

’ :
-z

.



Party like it’s 1997.

PostgreSQL does not have an in-core distributed scaling
solution.

“Use read replicas” is fine as far as it goes, but requires
front-end tooling and application awareness.

Sharding requires a third-party solution or custom
application development.

Write scaling is much harder than read scaling.

Sharding solutions often have uncomfortable integration with
high availabillity.



Matching DB resources to load.

 Nearly all databases have a load profile that is not a straight line.

e Right now, the solution is to provision for the largest sustained
spike.

e EXxpensive for your own hardware, ruinous for cloud
computing.

e “Spin up more read replicas” is not a viable solution when new
database demand can hit in seconds.

* Adjusting the primary database size generally means downtime,
at the worst possible moment.



Scale doesn’t scale.

Moore’s Law Is dead now.

Individual core performance will be (by historical
standards) flat for the foreseeable future.

Lower-performance, lower-power, higher-core-count
CPUs (and arrays of them) are the new normal.

PostgreSQL’s current process model is not a good fit for
this environment.



What we want.



Oracle BEEERE

Real Application
Clusters (RAC)




Oracle BEEEE

Real Application
Clusters (RAC)

(that doesn’t suck)



A single sharding /
HA solution.

Cloud computing has fundamentally changed how we
view system resources.

“Servers” are both easy to provision and transient.

Firing up twelve servers to handle six shards is
completely reasonable now.

Sharding solutions that don’t take HA into account are
making a bad situation worse.



.r‘\ (“‘ lasahs (2 }’-h"



| was that man.

Yes, “the cloud” is just other people’s computers.
But it has fundamentally changed how operations work.

The ability to dynamically provision computing resources
IS revolutionary.

Especially compared to the Big Glass-House Server
model we had through the early 2000s.

PostgreSQL has not kept up with this model.



How It was.

One server that provides an endpoint.
This server completely encapsulates the service.

That server “owns” the storage resources required to
provide the service.

“Scaling up” requires that you get a bigger server, faster
networking, faster |/0O...

... or you do a lot of application development work.



How It Is.

Computing resources (“servers”) come and go all the
time, due to scaling, host machine failure, etc.

Storage resources are widely shared across applications
and computing resources, and provide the persistence.

Multiple computing resources share the same underlying
storage.

Scaling up means spinning up more compute resources
to work on the same underlying data.



What we want.






... with PostgreSQL functionality.



This means...

A single endpoint for both reading and writing.

Adding more resources is done automatically to meet
bursts or sustained demand, or manually to handle
prospective demand.

The cluster is tolerant of node failures, and heals without
manual intervention.

That pony would be nice, too, while you’re up.



PostgreSQL vs
The Future.

The PostgreSQL model is rooted in the old, server-centric
world.

That world is passing and will never come back.
New approaches to scaling are required.

If we want PostgreSQL to thrive in this world, we need to
start thinking about this.



Lots of hard problems.

Distributed lock manager.

Distributed transaction manager.

Distributed foreign keys (and other relationships).
Parallelizing everything.

Resilience to individual compute node failures (restartable
partial queries, etc.).

Front-end routing (with its own high availability story).



But we need to move forward.

e The old “single glass house server’” model is dead.
e Even if it hasn’t quite stopped moving yet.

 The rapid adoption of containers shows that this is
something we’ve been waiting for.

e This will be a whole new codebase!

e Butin 1999, so was PostgreSQL.



In Sum.



“Professionals talk

logisties operations.”

PostgreSQL relies too much on third parties for its full
operation solution.

For the vast majority of our customers, they are not
waiting for new core RDBMS features.

Replication didn’t stop with Slony. Operational features
need core support, too.

Third parties are embracing / enhancing / extinguishing
community PostgreSQL through operational convenience.






Christophe Pettus

CEO, PostgreSQL Experts, Inc.

christophe.pettus@pgexperts.com

thebuild.com

twitter @xof


mailto:christophe.pettus@pgexperts.com
http://thebuild.com

https://2018.nordicpgday.org/feedback



