
Why is PostgreSQL Terrible?

Christophe Pettus 
PostgreSQL Experts 

Nordic PGDay 2018



Christophe Pettus 
CEO, PostgreSQL Experts, Inc. 

 
christophe.pettus@pgexperts.com 

thebuild.com 

twitter @xof

mailto:christophe.pettus@pgexperts.com
http://thebuild.com


"It's more of a comment…"



"It's more of a comment…"





Why is PostgreSQL 
terrible?



Spoiler Alert!



It’s not.





Thanks for coming!



So, what is this?
• The most common pain points we hear from customers.


• A field report.


• Not edited for ease of solving the problem.


• Freely concede that some of these will be very hard to fix.


• But the customer is always right!



A bit about PGX
• San Francisco (area)-based consultancy, since 2009.


• Hundreds of clients over the life of the company.


• Dozens of active clients.


• Primarily focused, ad hoc engagements.


• Companies from one-person startups to Fortune 5; 
databases from 10MB to multiple petabytes.



A bit about me.
• A DBA with a lot of developer experience.


• (wrote an entire SQL RDBMS in C++ once.)


• PostgreSQL user since 7.1 6.5!


• That’s before foreign key constraints.


• PostgreSQL consultant for 10+ years.


• PostgreSQL is my life!







No bikeshedding!
• “This is solved by third-party tool x.”


• Worthy tools, but we’re focusing on community 
PostgreSQL here.


• “This would be very hard and you can’t do it because of 
architecture / resources / malignant influence of the moon.”


• We said that about SERIALIZABLE.


• “This is being worked on!”


• Great!



Query Planning



PostgreSQL’s query 
planning is great.

• But to most application developers, it’s a random number 
generator.


• Query optimization is an experimental art, and requires a 
lot of trial-and-error.


• There’s very little visibility into exactly why the query 
planner chose the precise execution plan it did.


• Optimizing complex queries can be very difficult, 
especially in a test or staging environment.



Things that are hard to 
explain.

• “Why isn’t it using an index?”


• “Why can’t I explain to it that the query plan is wrong?”


• “Why didn’t it collect statistics on the sequential scan it 
just did?”


• “How can I tell how this query is going to be planned on a 
much larger database?”



Query “tuning” parameters.
• No longer connected to anything real.


• Spinning disk parameters in an SSD/SAN world.


• Requires tribal knowledge, back-engineering, and just 
fooling around until something works…


• … and hope it doesn’t break as the database grows.



What I’d like.
• Ability to trace the query planning process.


• Ability to produce plans for theoretical database sizes and 
distributions.


• Experiential evidence gathered during query execution fed 
back into the query planning process.


• Whisper it: Hints.


• But hints in a PostgreSQL-type way.


• More insight into the data, not “walk this way.”



VACUUM



Everyone blames VACUUM 
for everything all the time.

• The two most common initial requests are “adding 
indexes” and “tuning VACUUM.”


• It’s almost never VACUUM.


• That being said, VACUUM is very hard to tune.


• The current set of tuning parameters are pure guesswork, 
and far too focused on the underlying implementation.


• When VACUUM goes wrong, it goes really wrong.



What we want.
• Flexible resource caps based on real-world parameters (“no 

more than x% of system resources”), with emergency fallbacks.


• Better solutions for high-update situations.


• More work done at update time, to reduce the amount of 
bulk VACUUM activity.


• Parallel VACUUM on large tables.


• Better (=any) autovacuum prioritization.


• Or no VACUUM at all, but one step at a time.



Database 
Functionality



Database 
Functionality



Everyone Loves 
PostgreSQL.

• Everyone is very happy with core database functionality.


• New features are appreciated and adopted…


• … but the lack of them is almost never a source of 
complaints.


• No one ever rejects or moves away from PostgreSQL 
because of core engine functionality.


• It’s always an operations problem.



Upgrades



PostgreSQL 
upgrades are terrible.



The options are:
• Dump/restore — Impractical with real-life databases.


• pg_upgrade — Does the job, but weird gotchas and 
unexpected behaviors, not great interaction with 
secondaries.


• Slony/Bucardo/etc. — Weird and fiddly, imposes 
requirements on the schema, and load on the source.


• pglogical — Requires 9.4+, imposes requirements on the 
schema, and is not bug-free.



So many problems.
• Entire streaming replica clusters must be upgraded 

together.


• PITR backups are not restorable into the new version, 
making them of reduced value.


• Every PostgreSQL extension creates a new place for 
upgrade to fail.


• “Oh, an upgrade across those versions is easy, we’ll 
just use pg_upgrade oh you’re running PostGIS?”



What we want.
• Major version upgrades that are just like minor version 

upgrades.


• Version-aware disk format.


• For many customers, even the “bounce” for a minor 
version upgrade requires extensive planning.


• This is why large sites often stay on EOL’d versions.


• 15TB database on 8.1 (and Solaris).



Connection 
Management



Let’s be honest.
• Most application stacks have terrible connection 

management.


• The reaction to running out of connections is to kick up 
max_connections until the problem goes away.


• “Just set max_connections to 25000 we’ll sort it out 
later.”


• And then watch as the database server melts down when 
too many connections become active at once.



PgBouncer, right?
• Yeah sure fine.


• One more moving piece…


• … with its own high availability (and monitoring, and 
deployment, etc.) story.


• Single-threaded, and can easily become the bottleneck 
under high connection churn and query rates.


• Problematic for environments with many different 
databases, or database roles.



What we want.
• PgBouncer-like multithreaded event based connection 

management in core.


• And a pony, while you’re at it.


• A (possibly optional) layer on top of the existing backend 
model.


• Ability to switch database and role without re-forking a 
back end.



High Availability



The PostgreSQL HA Story.
• “Add a streaming replica.”


• “Add um some up-front component that handles routing 
to the active server mumble mumble PGPool.”


• “Write a bunch of scripts to handle instance replacement 
and provisioning.”


• “Problem solved!”



This is a terrible story.
• Requires third-party tools of varying degrees of quality, 

history, and community support.


• Some are great, don’t get me wrong!


• Requires scripting and configuration.


• Often does not solve important problems (reprovisioning, 
etc.).


• Streaming replication has an inherent tradeoff between 
useful-for-load-balancing and useful-for-failover.



What we want.





Amazon RDS solves this 
out of the box.

• RDS’ high availability story is the strongest single driver 
towards RDS adoption.


• RDS has a lot of negatives as a product.


• Black box performance, Amazon lock-in, version lag, 
upgrade strangeness, expense…


• But the HA story is complete, easy to understand, and 
easy to integrate into an application stack.



A proper solution needs to 
provide…

• A single consistent endpoint for the application to connect to.


• Load balancing to amortize the cost of the secondaries.


• Replacement of failed nodes.


• In a perfect world, aborted transactions rather than broken 
connections.


• A library of pre-packaged scripts for common environments 
(AWS, OpenStack…).


• A framework for scripting to handle bespoke environments.



Scaling



The out-of-the-box 
scaling solution.



Get a bigger server.



Party like it’s 1997.
• PostgreSQL does not have an in-core distributed scaling 

solution.


• “Use read replicas” is fine as far as it goes, but requires 
front-end tooling and application awareness.


• Sharding requires a third-party solution or custom 
application development.


• Write scaling is much harder than read scaling.


• Sharding solutions often have uncomfortable integration with 
high availability.



Matching DB resources to load.

• Nearly all databases have a load profile that is not a straight line.


• Right now, the solution is to provision for the largest sustained 
spike.


• Expensive for your own hardware, ruinous for cloud 
computing.


• “Spin up more read replicas” is not a viable solution when new 
database demand can hit in seconds.


• Adjusting the primary database size generally means downtime, 
at the worst possible moment.



Scale doesn’t scale.
• Moore’s Law is dead now.


• Individual core performance will be (by historical 
standards) flat for the foreseeable future.


• Lower-performance, lower-power, higher-core-count 
CPUs (and arrays of them) are the new normal.


• PostgreSQL’s current process model is not a good fit for 
this environment.



What we want.





(that doesn’t suck)



A single sharding /  
HA solution.

• Cloud computing has fundamentally changed how we 
view system resources.


• “Servers” are both easy to provision and transient.


• Firing up twelve servers to handle six shards is 
completely reasonable now.


• Sharding solutions that don’t take HA into account are 
making a bad situation worse.





I was that man.
• Yes, “the cloud” is just other people’s computers.


• But it has fundamentally changed how operations work.


• The ability to dynamically provision computing resources 
is revolutionary.


• Especially compared to the Big Glass-House Server 
model we had through the early 2000s.


• PostgreSQL has not kept up with this model.



How it was.
• One server that provides an endpoint.


• This server completely encapsulates the service.


• That server “owns” the storage resources required to 
provide the service.


• “Scaling up” requires that you get a bigger server, faster 
networking, faster I/O…


• … or you do a lot of application development work.



How it is.
• Computing resources (“servers”) come and go all the 

time, due to scaling, host machine failure, etc.


• Storage resources are widely shared across applications 
and computing resources, and provide the persistence.


• Multiple computing resources share the same underlying 
storage.


• Scaling up means spinning up more compute resources 
to work on the same underlying data.



What we want.





… with PostgreSQL functionality.



This means…
• A single endpoint for both reading and writing.


• Adding more resources is done automatically to meet 
bursts or sustained demand, or manually to handle 
prospective demand.


• The cluster is tolerant of node failures, and heals without 
manual intervention.


• That pony would be nice, too, while you’re up.



PostgreSQL vs 
The Future.

• The PostgreSQL model is rooted in the old, server-centric 
world.


• That world is passing and will never come back.


• New approaches to scaling are required.


• If we want PostgreSQL to thrive in this world, we need to 
start thinking about this.



Lots of hard problems.
• Distributed lock manager.


• Distributed transaction manager.


• Distributed foreign keys (and other relationships).


• Parallelizing everything.


• Resilience to individual compute node failures (restartable 
partial queries, etc.).


• Front-end routing (with its own high availability story).



But we need to move forward.

• The old “single glass house server” model is dead.


• Even if it hasn’t quite stopped moving yet.


• The rapid adoption of containers shows that this is 
something we’ve been waiting for.


• This will be a whole new codebase!


• But in 1999, so was PostgreSQL.



In Sum.



“Professionals talk  
logistics operations.”

• PostgreSQL relies too much on third parties for its full 
operation solution.


• For the vast majority of our customers, they are not 
waiting for new core RDBMS features.


• Replication didn’t stop with Slony. Operational features 
need core support, too.


• Third parties are embracing / enhancing / extinguishing 
community PostgreSQL through operational convenience.



Thank you!



Christophe Pettus 
CEO, PostgreSQL Experts, Inc. 

 
christophe.pettus@pgexperts.com 

thebuild.com 

twitter @xof

mailto:christophe.pettus@pgexperts.com
http://thebuild.com


https://2018.nordicpgday.org/feedback


