


How extreme can PostgreSQL get?

* PostgreSQL has almost no hard limits on anything.
e Number of databases: 4,294,950,911.
* Relations per database: 1,431,650,303.

* Relation size: 32TB (bigger if you compile with a larger block size).

PGX

pgexperts.com



But how about speed?

* GitLab has sustained 360,000 transactions per second.

 We’'ve seen individual servers at >500,000 INSERTs per second.

PGX

pgexperts.com



How about lots of tables?

 Schema-based multi-tenancy has introduced a new world of big schemas.

e 250,000+ tables are not uncommon.

PGX

pgexperts.com






This i1Is how!

* \ery large databases (with lots of read activity).
 Databases with very high write rates.

 Databases with very large schemas.

PGX

pgexperts.com



BIG DATA.



How big is big?

* A terabyte here, a terabyte there, and soon you're talking about real data.
e Qur view is:
 Under 100GB is small.
 100GB - 4TB is medium-sized.
e 41B - 201B Is large-ish.
 Above 20TB, now you’re talking!
* Above a petabyte? OK, that’s a real database.
PGX

pgexperts.com



You can’t be too rich, or...

e ... have too much RAM.
 Databases of this scale will not fit into memory.
* Although you can get a 4TB RDS instance!
 Get as much RAM as you can possibly afford. You’ll need all of it.
 More cores are nice, but max out RAM before spending money on cores.

* Of course, on certain cloud providers, you don’t get a choice there.

PGX

pgexperts.com



Partition early and often.

» Partitioned tables are your friend.

* Recent (14+) versions of PostgreSQL handle large (1000-ish) number of
partitions reasonably well.

 Be sure you have a good partition key!
* This will take you into the “big schema” territory, so see that section too.

* Also helps with retention policies for time-based data.

PGX

pgexperts.com



Enjoy the parallelism.

* \ery large tables and indexes benefit (a lot) from parallel operations.
 Be sure to give the system enough parallel workers.
* max_worker_processes = cores * 4
 max_parallel_workers = cores * 3
 max_parallel_workers_per_gather = cores

* As of version 14, PostgreSQL can scan multiple partitions in parallel!

PGX

pgexperts.com



Partial Indexes.

 Make use of partial indexes to “precalculate” queries.
* Be sure the predicate reduces the index size by 50%+.

* Be sure the indexes are actually being used (pg_stat_user_indexes).

PGX

pgexperts.com



BRIN indexes.

* |f you have time series or other data with monotonically increasing keys.

 BRIN indexes are much smaller than B-tree indexes (even with the new B-tree
optimizations).

 BRIN indexes + time-based partitions is a great combination.
e Data that is heavily updated can break this, though.

* Consider setting a low fill_factor to help with updates landing on the same

PGX

pgexperts.com



Autovacuum.

* Big tables can take a long time to scan.

 Reduce autovacuum_vacuum_cost_delay (even to 0) to get autovacuum to
work faster.

 More workers don’t help for big tables (but they do help for bigger schemas).

PGX

pgexperts.com



Shared Buffers.

* Be generous with shared_buffers in a database like this.

e ... assuming you don’t need the memory for big sort etc. operations’
work_mem.

e 40-50% of total system memory is not unreasonable here.

PGX

pgexperts.com



Planner Settings.

* |f you have joins with a large number of tables, increase join_collapse_limit (be
aware that plan time will go up).

* Push the planner away from sequential scans:
e seq_page_cost = 0.1
 random_page_cost = 0.1
 cpu_tuple_cost = 0.03

 Make sure that effective_cache_size is big enough (really, you can lie to the
planner here, the planner police won’t arrest you). PGX

pgexperts.com



Backups.

* Consider doing incremental disk snapshots instead of copy-based backups.
* This will also help keep the restore time under control.

 Or use atool that does block-level incremental backups.
 pgBackRest

 Even though expensive, you definitely need a secondary or two.

* Restores from backup will be slow no matter what system you use, and you
don’t want to be down for days while they are happening.

pgexperts.com



Xtra for Xperts.

 Recompile PostgreSQL with a larger block size.

 Can reduce the overhead of large shared_buffers, make more efficient use of
/O operations.

o 32KB Is an attractive point.

 Warning: This may break some tools that assume an 8KB block size without
checking.

* |f you are the author of one of those tools, please fix it.

PGX

pgexperts.com



Cache Everything That Moves.

* Roll-up tables.
* Front-end query caches.
* Application-specific caches.

* [ry to hit the database as little as possible.

PGX

pgexperts.com



BIG WRITES.



Step #1: Fast |/0.

* You can’t write to secondary storage faster than secondary storage can be
written to.

* NVMe local storage is the way to go here.
* RAID-0 striped!
* Be sure you have a good recovery plan (see later for that).

 Move the pg_wal directory onto a separate volume.

« NAS

PGX

pgexperts.com



sysctl.conf

* The default configuration on most Linux distros isn’t great for very fast |/0.
* You want the file system cache flush to happen early and often.
 vm.dirty_background_ratio = 5
 vm.dirty_ratio = 90 # The usual recommendation on this is wrong.

* vm.swappiness = 1

PGX

pgexperts.com



Bandwidth is not the whole story.

* Every storage vendor loves to talk about their incredibly high bandwidth.
 No storage vendor loves to talk about their incredibly bad latency.
* Especially on the WAL, latency Is very very important.

* Especially latency after a sync.

* NAS storage (which includes EBS) tends to have bad latency characteristics.

PGX

pgexperts.com



Schema design, or, no you don't need that Index

 Minimize indexes.
 Minimize unigue indexes especially.

* [ry to have uniqgueness guaranteed at generation time.
 Don’t have foreign key constraints unless you really need them.
 Don’t use highly-random primary keys.

* No UUIDs, unless they are sequential in the high bits.

» Don’t even think about having GIN indexes. PGX

pgexperts.com



More schema thoughts.

* Avoid large datatypes.

* |arge being >2,000 bytes-ish.

* Writing to the TOAST table significantly slows down write performance.
* Avoid triggers firing on writes.

* fillfactor = 100 unless you are also going to be updating rows frequently.

PGX

pgexperts.com



Shared Buffers and Checkpoints.

* The following applies to nearly append-only databases.

* Unlearn everything you've been taught about setting these.
 Reduce shared_buffers (10% is reasonable).

* Checkpoint every five minutes (experiment with even lower).
 Keep max_wal_size high enough so that the timeout fires first.

 For databases that are a mix of read, insert, and update, nhormal
checkpointing (15 minutes) and shared_buffers is a better idea.

PGX

pgexperts.com



Background Writer etc.

* The default background writer configuration is not aggressive.
 bgwriter_delay = 5ms

* bgwriter_Iru_maxpages = 1600 # or more!

* bgwriter_lru_multiplier = 3.0

 wal_compression = on

PGX

pgexperts.com



Autovacuum.

 Be prepared to do manual vacuums and analyzes.
* On high write loads, autovacuum may not keep up by itself.
* Planner statistics can get out of whack very quickly.

Do manual VACUUM FREEZE operations to stay way ahead of a wraparound
autovacuum.

* |f you are updating frequently, you’re going to get index bloat.

* Plan to rebuild indexes to squeeze it out.

PGX

pgexperts.com



Other settings.

* |ncrease wal_buffers; 128MB is not a bad place to start.
* synchronous_commit = off unless you must have it on.

* Consider having it off, but turning it on locally for “important” transactions.

PGX

pgexperts.com



Client interactions.

 Use COPY instead of INSERT if you can.

» Use multi-valued INSERT statements.

 Use a prepared INSERT statement.

 Combine multiple INSERTs into a single transaction.

 And do not combine a high write workload with a read workload!

* Do not use subtransactions no matter how much they beg you.

PGX

pgexperts.com



Replicas.

 Recovery Is single-threaded.
* Writing to the database is not.
* pgprefaulter can help speed up recovery; by all means use it:

e https://qgithub.com/TritonDataCenter/pg prefaulter

* Consider using pgBackRest or another backup tool that can parallelize
archive_command.

PGX

pgexperts.com


https://github.com/TritonDataCenter/pg_prefaulter

If we can’t do reads, how do we use this data?

 Move read load to replicas.
* Understanding that there could be significant replication lag.
* |f the write load is bursty, consider logical replication.

* Replica can have indexes, triggers, summary tables, all sorts of good
things.

* |t won't be able to keep up with a very high continuous write load, though.

* |f you can work with hours-old data, take snapshots periodically and bring

them on-line. PGX

pgexperts.com



Extend locks.

 Extend locks can be painful in a high-write situation.
 PostgreSQL’s adaptive algorithm is better than nothing, but not perfect.
* \ersion 16 has significant improvements here, so upgrade.

* Use a file system where extending a file is (relatively) fast.

* |n our testing:

o XFS > EXT4 > ZFS > anything NAS-based.

PGX

pgexperts.com



BIG SCHEMAS.



How big?

 Under 1,000 tables is pretty normal.
* 1,000 - 10,000... “Getting big.”

e 10,000 - 100,000... “Getting bigger!”
* 100,000+ ... “OK, that’s big.”

PGX

pgexperts.com



Schema-based sharding

 Most common reason for large schemas.
* 1,000 tables times 250 tenants in a single database.

e Boom!

PGX

pgexperts.com



Generally, works out of the box!

 Most of the bad PostgreSQL issues with large schemas are in the past.
« Remember O(NAN) pg_dump behavior? Ow.

* Plan to do upgrades using logical replication rather than pg_upgrade, unless
you can take downtime in the hour range.

* |f you are doing tenancy, migrate tenant by tenant.

* Be careful about your monitoring tools! A lot of them do system catalog
queries that can really grind to a halt on large schemas.

PGX

pgexperts.com



Settings.

 Many more autovacuum workers (25+).
 Be sure that autovacuum_work_mem is lower, to avoild memory pressure.

 Monitor xid age, and how long it is taking to get to individual tables, carefully.

PGX

pgexperts.com



Query Things.

Do as much as you can with prepared statements.

* Planning queries system catalogs, and system catalogs get very big here.

PGX

pgexperts.com



File System Things.

* |ncrease max_files_per_process.

 Be sure to increase any system-level limits on number of open files.
* |ncrease max_locks_per_transaction.

* This is especially true if you are using partitioned tables.
* Use a file system that handles a large number of files gracefully.

« /FS > EXT4 > XFS (although the differences are not large).

PGX

pgexperts.com



Databases or schemas?

* Using databases for sharding instead of schemas can reduce the overhead of
large system catalogs.

|t defeats pooling and makes the connection model more complicated,
though.

PGX

pgexperts.com



WHEN IN DOUBT...



Shard.

» Sharding across multiple PostgreSQL instances helps with all of these scenarios.
* | ess data per node.
» Distributes write activity.
 Fewer tables per node.

* Can be application-specific or an automatic-sharding solution (Citus).

* Often easier than trying to wring maximum performance out of a single node.

* Often the only real way to get very very high performance in a DBaaS environment.

PGX

pgexperts.com



THANK YOU!




thebuild.com



http://thebuild.com

QUESTIONS?



pgexperits.com




