


How extreme can PostgreSQL get?

* PostgreSQL has almost no hard limits on anything.
e Number of databases: 4,294,950,911.
* Relations per database: 1,431,650,303.

* Relation size: 32TB (bigger if you compile with a larger block size).
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But how about speed?

* GitLab has sustained 360,000 transactions per second.

 We’'ve seen individual servers at >500,000 INSERTs per second.
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How about lots of tables?

 Schema-based multi-tenancy has introduced a new world of big schemas.

e 250,000+ tables are not uncommon.
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This i1Is how!

* \ery large databases (with lots of read activity).
 Databases with very high write rates.

 Databases with very large schemas.
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BIG DATA.



How big is big?

* A terabyte here, a terabyte there, and soon you're talking about real data.
e Qur view is:
 Under 100GB is small.
 100GB - 4TB is medium-sized.
e 41B - 201B Is large-ish.
 Above 20TB, now you’re talking!
* Above a petabyte? OK, that’s a real database.
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You can’t be too rich, or...

e ... have too much RAM.
 Databases of this scale will not fit into memory.
* Although you can get a 4TB RDS instance!
 Get as much RAM as you can possibly afford. You’ll need all of it.
 More cores are nice, but max out RAM before spending money on cores.

* Of course, on certain cloud providers, you don’t get a choice there.
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Partition early and often.

» Partitioned tables are your friend.

* Recent (14+) versions of PostgreSQL handle large (1000-ish) number of
partitions reasonably well.

 Be sure you have a good partition key!
* This will take you into the “big schema” territory, so see that section too.

* Also helps with retention policies for time-based data.
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Enjoy the parallelism.

* \ery large tables and indexes benefit (a lot) from parallel operations.
 Be sure to give the system enough parallel workers.
* max_worker_processes = cores * 4
 max_parallel_workers = cores * 3
 max_parallel_workers_per_gather = cores

* As of version 14, PostgreSQL can scan multiple partitions in parallel!
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Partial Indexes.

 Make use of partial indexes to “precalculate” queries.
* Be sure the predicate reduces the index size by 50%+.

* Be sure the indexes are actually being used (pg_stat_user_indexes).
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BRIN indexes.

* |f you have time series or other data with monotonically increasing keys.

 BRIN indexes are much smaller than B-tree indexes (even with the new B-tree
optimizations).

 BRIN indexes + time-based partitions is a great combination.
e Data that is heavily updated can break this, though.

* Consider setting a low fill_factor to help with updates landing on the same
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Autovacuum.

* Big tables can take a long time to scan.

 Reduce autovacuum_vacuum_cost_delay (even to 0) to get autovacuum to
work faster.

 More workers don’t help for big tables (but they do help for bigger schemas).
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Shared Buffers.

* Be generous with shared_buffers in a database like this.

e ... assuming you don’t need the memory for big sort etc. operations’
work_mem.

e 40-50% of total system memory is not unreasonable here.
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Planner Settings.

* |f you have joins with a large number of tables, increase join_collapse_limit (be
aware that plan time will go up).

* Push the planner away from sequential scans:
e seq_page_cost = 0.1
 random_page_cost = 0.1
 cpu_tuple_cost = 0.03

 Make sure that effective_cache_size is big enough (really, you can lie to the
planner here, the planner police won’t arrest you). PGX
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Backups.

* Consider doing incremental disk snapshots instead of copy-based backups.
* This will also help keep the restore time under control.

 Or use atool that does block-level incremental backups.
 pgBackRest

 Even though expensive, you definitely need a secondary or two.

* Restores from backup will be slow no matter what system you use, and you
don’t want to be down for days while they are happening.
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Xtra for Xperts.

 Recompile PostgreSQL with a larger block size.

 Can reduce the overhead of large shared_buffers, make more efficient use of
/O operations.

o 32KB Is an attractive point.

 Warning: This may break some tools that assume an 8KB block size without
checking.

* |f you are the author of one of those tools, please fix it.
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Cache Everything That Moves.

* Roll-up tables.
* Front-end query caches.
* Application-specific caches.

* [ry to hit the database as little as possible.
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BIG WRITES.



Step #1: Fast |/0.

* You can’t write to secondary storage faster than secondary storage can be
written to.

* NVMe local storage is the way to go here.
* RAID-0 striped!
* Be sure you have a good recovery plan (see later for that).

 Move the pg_wal directory onto a separate volume.

« NAS
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sysctl.conf

* The default configuration on most Linux distros isn’t great for very fast |/0.
* You want the file system cache flush to happen early and often.
 vm.dirty_background_ratio = 5
 vm.dirty_ratio = 90 # The usual recommendation on this is wrong.

* vm.swappiness = 1
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Bandwidth is not the whole story.

* Every storage vendor loves to talk about their incredibly high bandwidth.
 No storage vendor loves to talk about their incredibly bad latency.
* Especially on the WAL, latency Is very very important.

* Especially latency after a sync.

* NAS storage (which includes EBS) tends to have bad latency characteristics.

PGX

pgexperts.com



Schema design, or, no you don't need that Index

 Minimize indexes.
 Minimize unigue indexes especially.

* [ry to have uniqgueness guaranteed at generation time.
 Don’t have foreign key constraints unless you really need them.
 Don’t use highly-random primary keys.

* No UUIDs, unless they are sequential in the high bits.

» Don’t even think about having GIN indexes. PGX
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More schema thoughts.

* Avoid large datatypes.

* |arge being >2,000 bytes-ish.

* Writing to the TOAST table significantly slows down write performance.
* Avoid triggers firing on writes.

* fillfactor = 100 unless you are also going to be updating rows frequently.
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Shared Buffers and Checkpoints.

* The following applies to nearly append-only databases.

* Unlearn everything you've been taught about setting these.
 Reduce shared_buffers (10% is reasonable).

* Checkpoint every five minutes (experiment with even lower).
 Keep max_wal_size high enough so that the timeout fires first.

 For databases that are a mix of read, insert, and update, nhormal
checkpointing (15 minutes) and shared_buffers is a better idea.
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Background Writer etc.

* The default background writer configuration is not aggressive.
 bgwriter_delay = 5ms

* bgwriter_Iru_maxpages = 1600 # or more!

* bgwriter_lru_multiplier = 3.0

 wal_compression = on
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Autovacuum.

 Be prepared to do manual vacuums and analyzes.
* On high write loads, autovacuum may not keep up by itself.
* Planner statistics can get out of whack very quickly.

Do manual VACUUM FREEZE operations to stay way ahead of a wraparound
autovacuum.

* |f you are updating frequently, you’re going to get index bloat.

* Plan to rebuild indexes to squeeze it out.
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Other settings.

* |ncrease wal_buffers; 128MB is not a bad place to start.
* synchronous_commit = off unless you must have it on.

* Consider having it off, but turning it on locally for “important” transactions.
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Client interactions.

 Use COPY instead of INSERT if you can.

» Use multi-valued INSERT statements.

 Use a prepared INSERT statement.

 Combine multiple INSERTs into a single transaction.

 And do not combine a high write workload with a read workload!

* Do not use subtransactions no matter how much they beg you.
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Replicas.

 Recovery Is single-threaded.
* Writing to the database is not.
* pgprefaulter can help speed up recovery; by all means use it:

e https://qgithub.com/TritonDataCenter/pg prefaulter

* Consider using pgBackRest or another backup tool that can parallelize
archive_command.
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https://github.com/TritonDataCenter/pg_prefaulter

If we can’t do reads, how do we use this data?

 Move read load to replicas.
* Understanding that there could be significant replication lag.
* |f the write load is bursty, consider logical replication.

* Replica can have indexes, triggers, summary tables, all sorts of good
things.

* |t won't be able to keep up with a very high continuous write load, though.

* |f you can work with hours-old data, take snapshots periodically and bring

them on-line. PGX
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Extend locks.

 Extend locks can be painful in a high-write situation.
 PostgreSQL’s adaptive algorithm is better than nothing, but not perfect.
* \ersion 16 has significant improvements here, so upgrade.

* Use a file system where extending a file is (relatively) fast.

* |n our testing:

o XFS > EXT4 > ZFS > anything NAS-based.
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BIG SCHEMAS.



How big?

 Under 1,000 tables is pretty normal.
* 1,000 - 10,000... “Getting big.”

e 10,000 - 100,000... “Getting bigger!”
* 100,000+ ... “OK, that’s big.”
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Schema-based sharding

 Most common reason for large schemas.
* 1,000 tables times 250 tenants in a single database.

e Boom!
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Generally, works out of the box!

 Most of the bad PostgreSQL issues with large schemas are in the past.
« Remember O(NAN) pg_dump behavior? Ow.

* Plan to do upgrades using logical replication rather than pg_upgrade, unless
you can take downtime in the hour range.

* |f you are doing tenancy, migrate tenant by tenant.

* Be careful about your monitoring tools! A lot of them do system catalog
queries that can really grind to a halt on large schemas.
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Settings.

 Many more autovacuum workers (25+).
 Be sure that autovacuum_work_mem is lower, to avoild memory pressure.

 Monitor xid age, and how long it is taking to get to individual tables, carefully.
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Query Things.

Do as much as you can with prepared statements.

* Planning queries system catalogs, and system catalogs get very big here.
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File System Things.

* |ncrease max_files_per_process.

 Be sure to increase any system-level limits on number of open files.
* |ncrease max_locks_per_transaction.

* This is especially true if you are using partitioned tables.
* Use a file system that handles a large number of files gracefully.

« /FS > EXT4 > XFS (although the differences are not large).
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Databases or schemas?

* Using databases for sharding instead of schemas can reduce the overhead of
large system catalogs.

|t defeats pooling and makes the connection model more complicated,
though.
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WHEN IN DOUBT...



Shard.

» Sharding across multiple PostgreSQL instances helps with all of these scenarios.
* | ess data per node.
» Distributes write activity.
 Fewer tables per node.

* Can be application-specific or an automatic-sharding solution (Citus).

* Often easier than trying to wring maximum performance out of a single node.

* Often the only real way to get very very high performance in a DBaaS environment.
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THANK YOU!
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