
Christophe Pettus, CEO, PGX Inc.

Extreme PostgreSQL



How extreme can PostgreSQL get?

• PostgreSQL has almost no hard limits on anything.


• Number of databases: 4,294,950,911.


• Relations per database: 1,431,650,303.


• Relation size: 32TB (bigger if you compile with a larger block size).



But how about speed?

• GitLab has sustained 360,000 transactions per second.


• We’ve seen individual servers at >500,000 INSERTs per second.



How about lots of tables?

• Schema-based multi-tenancy has introduced a new world of big schemas.


• 250,000+ tables are not uncommon.



BUT HOW?



This is how!

• Very large databases (with lots of read activity).


• Databases with very high write rates.


• Databases with very large schemas.



BIG DATA.



How big is big?

• A terabyte here, a terabyte there, and soon you’re talking about real data.


• Our view is:


• Under 100GB is small.


• 100GB - 4TB is medium-sized.


• 4TB - 20TB is large-ish.


• Above 20TB, now you’re talking!


• Above a petabyte? OK, that’s a real database.



You can’t be too rich, or…

• … have too much RAM.


• Databases of this scale will not fit into memory.


• Although you can get a 4TB RDS instance!


• Get as much RAM as you can possibly afford. You’ll need all of it.


• More cores are nice, but max out RAM before spending money on cores.


• Of course, on certain cloud providers, you don’t get a choice there.



Partition early and often.

• Partitioned tables are your friend.


• Recent (14+) versions of PostgreSQL handle large (1000-ish) number of 
partitions reasonably well.


• Be sure you have a good partition key!


• This will take you into the “big schema” territory, so see that section too.


• Also helps with retention policies for time-based data.



Enjoy the parallelism.

• Very large tables and indexes benefit (a lot) from parallel operations.


• Be sure to give the system enough parallel workers.


• max_worker_processes = cores * 4


• max_parallel_workers = cores * 3


• max_parallel_workers_per_gather = cores


• As of version 14, PostgreSQL can scan multiple partitions in parallel!



Partial Indexes.

• Make use of partial indexes to “precalculate” queries.


• Be sure the predicate reduces the index size by 50%+.


• Be sure the indexes are actually being used (pg_stat_user_indexes).



BRIN indexes.

• If you have time series or other data with monotonically increasing keys.


• BRIN indexes are much smaller than B-tree indexes (even with the new B-tree 
optimizations).


• BRIN indexes + time-based partitions is a great combination.


• Data that is heavily updated can break this, though.


• Consider setting a low fill_factor to help with updates landing on the same 
page.



Autovacuum.

• Big tables can take a long time to scan.


• Reduce autovacuum_vacuum_cost_delay (even to 0) to get autovacuum to 
work faster.


• More workers don’t help for big tables (but they do help for bigger schemas).



Shared Buffers.

• Be generous with shared_buffers in a database like this.


• … assuming you don’t need the memory for big sort etc. operations’ 
work_mem.


• 40-50% of total system memory is not unreasonable here.



Planner Settings.

• If you have joins with a large number of tables, increase join_collapse_limit (be 
aware that plan time will go up).


• Push the planner away from sequential scans:


• seq_page_cost = 0.1


• random_page_cost = 0.1


• cpu_tuple_cost = 0.03


• Make sure that effective_cache_size is big enough (really, you can lie to the 
planner here, the planner police won’t arrest you).



Backups.

• Consider doing incremental disk snapshots instead of copy-based backups.


• This will also help keep the restore time under control.


• Or use a tool that does block-level incremental backups.


• pgBackRest


• Even though expensive, you definitely need a secondary or two.


• Restores from backup will be slow no matter what system you use, and you 
don’t want to be down for days while they are happening.



Xtra for Xperts.

• Recompile PostgreSQL with a larger block size.


• Can reduce the overhead of large shared_buffers, make more efficient use of 
I/O operations.


• 32KB is an attractive point.


• Warning: This may break some tools that assume an 8KB block size without 
checking.


• If you are the author of one of those tools, please fix it.



Cache Everything That Moves.

• Roll-up tables.


• Front-end query caches.


• Application-specific caches.


• Try to hit the database as little as possible.



BIG WRITES.



Step #1: Fast I/O.

• You can’t write to secondary storage faster than secondary storage can be 
written to.


• NVMe local storage is the way to go here.


• RAID-0 striped!


• Be sure you have a good recovery plan (see later for that).


• Move the pg_wal directory onto a separate volume.


• NAS



sysctl.conf

• The default configuration on most Linux distros isn’t great for very fast I/O.


• You want the file system cache flush to happen early and often.


• vm.dirty_background_ratio = 5


• vm.dirty_ratio = 90 # The usual recommendation on this is wrong.


• vm.swappiness = 1



Bandwidth is not the whole story.

• Every storage vendor loves to talk about their incredibly high bandwidth.


• No storage vendor loves to talk about their incredibly bad latency.


• Especially on the WAL, latency is very very important.


• Especially latency after a sync.


• NAS storage (which includes EBS) tends to have bad latency characteristics.



Schema design, or, no you don’t need that index.

• Minimize indexes.


• Minimize unique indexes especially.


• Try to have uniqueness guaranteed at generation time.


• Don’t have foreign key constraints unless you really need them.


• Don’t use highly-random primary keys.


• No UUIDs, unless they are sequential in the high bits.


• Don’t even think about having GIN indexes.



More schema thoughts.

• Avoid large datatypes.


• Large being >2,000 bytes-ish.


• Writing to the TOAST table significantly slows down write performance.


• Avoid triggers firing on writes.


• fillfactor = 100 unless you are also going to be updating rows frequently.



Shared Buffers and Checkpoints.

• The following applies to nearly append-only databases.


• Unlearn everything you’ve been taught about setting these.


• Reduce shared_buffers (10% is reasonable).


• Checkpoint every five minutes (experiment with even lower).


• Keep max_wal_size high enough so that the timeout fires first.


• For databases that are a mix of read, insert, and update, normal 
checkpointing (15 minutes) and shared_buffers is a better idea.



Background Writer etc.

• The default background writer configuration is not aggressive.


• bgwriter_delay = 5ms


• bgwriter_lru_maxpages = 1600 # or more!


• bgwriter_lru_multiplier = 3.0


• wal_compression = on



Autovacuum.

• Be prepared to do manual vacuums and analyzes.


• On high write loads, autovacuum may not keep up by itself.


• Planner statistics can get out of whack very quickly.


• Do manual VACUUM FREEZE operations to stay way ahead of a wraparound 
autovacuum.


• If you are updating frequently, you’re going to get index bloat.


• Plan to rebuild indexes to squeeze it out.



Other settings.

• Increase wal_buffers; 128MB is not a bad place to start.


• synchronous_commit = off unless you must have it on.


• Consider having it off, but turning it on locally for “important” transactions.



Client interactions.

• Use COPY instead of INSERT if you can.


• Use multi-valued INSERT statements.


• Use a prepared INSERT statement.


• Combine multiple INSERTs into a single transaction.


• And do not combine a high write workload with a read workload!


• Do not use subtransactions no matter how much they beg you.



Replicas.

• Recovery is single-threaded.


• Writing to the database is not.


• pgprefaulter can help speed up recovery; by all means use it:


• https://github.com/TritonDataCenter/pg_prefaulter


• Consider using pgBackRest or another backup tool that can parallelize 
archive_command.

https://github.com/TritonDataCenter/pg_prefaulter


If we can’t do reads, how do we use this data?

• Move read load to replicas.


• Understanding that there could be significant replication lag.


• If the write load is bursty, consider logical replication.


• Replica can have indexes, triggers, summary tables, all sorts of good 
things.


• It won’t be able to keep up with a very high continuous write load, though.


• If you can work with hours-old data, take snapshots periodically and bring 
them on-line.



Extend locks.

• Extend locks can be painful in a high-write situation.


• PostgreSQL’s adaptive algorithm is better than nothing, but not perfect.


• Version 16 has significant improvements here, so upgrade.


• Use a file system where extending a file is (relatively) fast.


• In our testing:


• XFS > EXT4 > ZFS > anything NAS-based.



BIG SCHEMAS.



How big?

• Under 1,000 tables is pretty normal.


• 1,000 - 10,000… “Getting big.”


• 10,000 - 100,000… “Getting bigger!”


• 100,000+ … “OK, that’s big.”



Schema-based sharding

• Most common reason for large schemas.


• 1,000 tables times 250 tenants in a single database.


• Boom!



Generally, works out of the box!

• Most of the bad PostgreSQL issues with large schemas are in the past.


• Remember O(N^N) pg_dump behavior? Ow.


• Plan to do upgrades using logical replication rather than pg_upgrade, unless 
you can take downtime in the hour range.


• If you are doing tenancy, migrate tenant by tenant.


• Be careful about your monitoring tools! A lot of them do system catalog 
queries that can really grind to a halt on large schemas.



Settings.

• Many more autovacuum workers (25+).


• Be sure that autovacuum_work_mem is lower, to avoid memory pressure.


• Monitor xid age, and how long it is taking to get to individual tables, carefully.



Query Things.

• Do as much as you can with prepared statements.


• Planning queries system catalogs, and system catalogs get very big here.



File System Things.

• Increase max_files_per_process.


• Be sure to increase any system-level limits on number of open files.


• Increase max_locks_per_transaction.


• This is especially true if you are using partitioned tables.


• Use a file system that handles a large number of files gracefully.


• ZFS > EXT4 > XFS (although the differences are not large).



Databases or schemas?

• Using databases for sharding instead of schemas can reduce the overhead of 
large system catalogs.


• It defeats pooling and makes the connection model more complicated, 
though.



WHEN IN DOUBT…



Shard.

• Sharding across multiple PostgreSQL instances helps with all of these scenarios.


• Less data per node.


• Distributes write activity.


• Fewer tables per node.


• Can be application-specific or an automatic-sharding solution (Citus).


• Often easier than trying to wring maximum performance out of a single node.


• Often the only real way to get very very high performance in a DBaaS environment.



THANK YOU!



thebuild.com

http://thebuild.com


QUESTIONS?




